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ABSTRACT

In this work, we present an algorithm for phaseless reconstruc-
tion from magnitude-only wavelet coefficients. The method relies
on an explicit relation between the log-magnitude and phase gradi-
ents of analytic wavelet transforms and an extension of the Phase-
Gradient Heap Integration (PGHI) algorithm recently introduced
for Gabor phaseless reconstruction. This relation is exact for a cer-
tain family of mother wavelets including Cauchy wavelets of arbi-
trary order, but only holds approximately otherwise. The presented
experiments show that, in practice, the proposed wavelet PGHI
method provides competitive quality for various mother wavelets.
Furthermore, wavelet PGHI is a non-iterative scheme and thus
computational performance is significantly better than established
alternate projection methods.

1. INTRODUCTION

The analysis of data utilizing time-frequency or time-scale rep-
resentations is prevalent in various scientific fields. Prominent
examples are medicine [1] and image [2, 3] and audio process-
ing [4, 5, 6]. Although these representations are often visualized
by using magnitude-only measurements, they are usually complex-
valued, i.e., provide an additional phase component. In general, re-
construction of the signal is only possible from the full complex-
valued representation. Since manipulations of the signal are of-
ten performed in the magnitude-only representation domain and in
some application we can even measure only the magnitudes, there
is a need to construct a phase that matches a given magnitude-only
representation.

This task is known as phase retrieval or phaseless reconstruc-
tion and has been considered from a theoretical [7, 8, 9, 10, 11]
as well as an algorithmic [12, 13, 14, 15, 16, 17, 18] viewpoint.
While theoretical results mainly deal with the feasibility of phase
retrieval, most algorithms are based on iterative projection meth-
ods. An important result we will build on, is that although in gen-
eral the full complex-valued representation is necessary for recon-
struction, there are settings where the phase and magnitude com-
ponents carry almost the same information. The first such case, the
STFT with Gaussian generator, was considered by Portnoff [19]
and later by Auger and Flandrin [20]. In this setting, the phase
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gradient and the gradient of the (logarithmically scaled) magni-
tude are in a one-to-one relationship. Recently, it was shown [21]
that for certain mother wavelets ψ ∈ L2(R) this is true for wavelet
transforms (WT) as well. More specifically, the Fourier transform
of the mother wavelet must satisfy

ψ̂(ξ) =

{
cξ

α−1
2 e−2πγξeiβ log ξ ξ ∈ R+,

0 otherwise,
(1)

for some c ∈ C, α > −1, β ∈ R, and γ ∈ C with Re(γ) > 0.
Similar to the STFT case with Gaussian generator, the resulting
WTs give time-scale representations that are analytic functions for
the time-scale parameter pair being interpreted as a single complex
variable. This class includes the Cauchy wavelet (β = 0), see [22],
for which analyticity of the WT was already shown in [23].

In this paper, we propose an algorithm relying on the phase-
magnitude relationship of the WT to perform wavelet phaseless
reconstruction. On large scale data, such as audio, this problem
has previously been addressed with generic alternating projection
methods, such as [16] and its variations. More recently a wavelet-
adapted iterative scheme has been proposed in [12, 7]. By combin-
ing a discrete approximation of the phase-magnitude relationship
with an adaptive integration scheme in the spirit of [24, 25, 26],
we can forgo iteration and obtain a phase estimate directly from
the magnitude-only coefficients.

We will first recall the results of [21], in particular, the char-
acterization of the WT phase gradient by its log-magnitude gradi-
ent for wavelets of the form (1). To motivate the implementation
in the discrete domain, we briefly sketch the transition from the
continuous to the discrete realm, as well as the invertible WT im-
plementation used in the experiments. Before proceeding to the
experiments, which are the main focus of this work, we formally
introduce the wavelet phase gradient heap integration algorithm
(WPGHI) for phaseless reconstruction.

Although the phase-magnitude relationship only holds exactly
for Cauchy wavelets, we demonstrate that for a broad class of
mother wavelets the relations hold approximately and our phase
reconstruction algorithm works surprisingly well. At the center
of the manuscript is an extensive evaluation that demonstrates the
performance of wavelet PGHI under variations of the mother wave-
let, its time-frequency resolution trade-off and the oversampling
rate. The dependence of reconstruction performance on the param-
eters is investigated and a comparison with the widely used (fast)
Griffin-Lim algorithm [27] is performed. Furthermore, we also
consider WPGHI as an initialization for fast Griffin-Lim. In a final
experiment, we consider wavelet PGHI for a wavelet with com-
pact support in the time domain. This can be considered the first
step towards a bounded delay implementation of wavelet PGHI in
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the vein of RTPGHI [28] for the short-time Fourier transform. To
complement this experiment, we further present a causal variant
of wavelet PGHI that processes the wavelet coefficients one time
position at a time, assuming that the phase at previous positions is
already known. In conjunction with a bounded delay framework
for wavelet analysis and synthesis, this algorithm can serve as the
central building block for a real-time implementation in the future.

Notation: In this contribution, we consider signals as finite en-
ergy functions in a continuous or discrete variable, i.e. s ∈ L2(R)
or s ∈ CL for some natural number L ∈ N. For a differen-
tiable function, we denote partial derivatives by ∂

∂• , where the
variable with respect to which we differentiate is substituted for
the placeholder •. The Fourier transform on L2(R) is the uni-
tary operator derived in the usual way from the integral transform
ŝ(ξ) = F(s)(ξ) =

∫
R s(t)e

−2πiξt dt that is defined for integrable
signals s ∈ L1(R). Finally, for a complex scalar z ∈ C, we denote
its real and imaginary parts by Re(z) and Im(z), respectively.

2. THE PHASE-MAGNITUDE RELATIONSHIP

Fix a function ψ ∈ L2(R) such that its Fourier transform ψ̂ van-
ishes almost everywhere on R−. The continuous WT (CWT) of a
function (or signal) s ∈ L2(R) with respect to the mother wavelet
ψ is defined as

Wψs(x, y) = 〈s,TxDyψ〉 =
1
√
y

∫
R
s(t)ψ

(
t− x
y

)
dt, (2)

for all x ∈ R, y ∈ R+. Here, Tx and Dy denote the translation
and dilation operators, respectively, given by (Txs)(t) = s(t−x),
and (Dys)(t) = y−1/2s(t/y) for all t ∈ R.

The CWT can be represented in terms of its magnitudeMs
ψ :=

|Wψs| ≥ 0 and phase φsψ := arg(Wψs) ∈ R as usual. With this
convention, log(Wψs) = log(Ms

ψ) + iφsψ .
In [21], it was shown that, with ψ as in (1), the function

x+ iy 7→ y−
α
2 eiβ log yWψs

(
x− Im(γ)

Re(γ)
y,

y

Re(γ)

)
. (3)

considered as a function in the complex variable z = x + iy
(y > 0) is analytic, i.e., complex differentiable on the upper half-
plane. In this case, the following expressions linking the partial
derivatives of the log-magnitude and phase components, hold:

Theorem 1 ([21, Th. 1]). Let ψ ∈ L2(R) be a function that satis-
fies

ψ̂(ξ) =

{
ξ
α−1
2 e−2πγξeiβ log ξ ξ ∈ R+,

0 otherwise,
(4)

for some α > −1, β ∈ R, and γ ∈ C with Re(γ) > 0. Then

∂

∂x
φsψ =

α

2yRe(γ)
−

∂
∂y

log
(
Ms
ψ

)
Re(γ)

+
Im(γ) ∂

∂x
log
(
Ms
ψ

)
Re(γ)

(5)

and
∂

∂y
φsψ =

α Im(γ)− 2β

2yRe(γ)
+
|γ|2 ∂

∂x
log
(
Ms
ψ

)
Re(γ)

−
Im(γ) ∂

∂y
log
(
Ms
ψ

)
Re(γ)

. (6)

For γ = 1, these relations simplify to

∂

∂x
φsψ(x, y) = − ∂

∂y
log(Ms

ψ)(x, y) +
α

2y
(7)

and
∂

∂y
φsψ(x, y) =

∂

∂x
log(Ms

ψ)(x, y)− β

y
. (8)

The wavelets ψ specified by (4) are also known as “Klauder
wavelets” and minimize a time-scale counterpart of Heisenberg
uncertainty [29, Prop. 16]. They are a minor generalization of
Cauchy wavelets [22], which are recovered for the choice β = 0
and γ = 1. Because a change in γ results only in a scale change,
dependent on Re(γ), and a time shift, dependent on Im(γ), we
will only consider the case γ = 1. For most of this contribution,
we will in fact consider only Cauchy wavelets.

In the following, ψ will refer to the wavelet specified by (4)
with γ = 1. We can also interpret the wavelet coefficients as time-
frequency measurements. More specifically, the Fourier transform
of ψ has quick decay around its unique peak (or center frequency),
located at ξb = α−1

4π
. Considering the L1-normalized dilation

D̃ys(t) = y−1s(t/y), we can define W̃ψs by

W̃ψs(x, ξ) = 〈s,TxD̃ξb/ξψ〉 =

√
ξ

ξb
Wψs(x, ξb/ξ).

For this form of the WT, straightforward calculations show that the
phase-magnitude relations read as follows:

∂

∂x
φ̃sψ(x, ξ) =

4πξ2

α− 1

∂

∂ξ
log(M̃s

ψ)(x, ξ) + 2πξ, (9)

∂

∂ξ
φ̃sψ(x, ξ) = −α− 1

4πξ2
∂

∂x
log(M̃s

ψ)(x, ξ) +
β

ξ
, (10)

where M̃ψ and φ̃ψ denote the magnitude and phase of W̃ψ , respec-
tively. In the following, we will discretize this form of the phase-
magnitude relations to derive a discrete approximation for appli-
cation within our proposed phaseless reconstruction algorithm.

It is notable that the formulas (9)–(10) almost exactly corre-
spond to the phase-magnitude relations in the STFT case with a
dilated Gaussian [24, Sec. III]. In particular, for β = 0 the only
difference is that the constant time-frequency ratio λ is replaced
by the frequency-dependent term α−1

4πξ2
.

3. PHASELESS RECONSTRUCTION

To perform phaseless reconstruction, we have to assume that the
given magnitude coefficients originate from an invertible wavelet
system, i.e., a wavelet frame. In this case, we can perform phase
estimation followed either by direct synthesis via a dual frame [30,
31, 32, 33] or iterative synthesis via, e.g., conjugate gradient itera-
tion [34, 6].

Although the performance of phaseless reconstruction should
be largely independent of the particular implementation of the anal-
ysis and synthesis operations, we briefly sketch a potential imple-
mentation for illustrative purposes, largely following [35, 36, 37,
6]. We will denote discretizations of continuous signals by brack-
ets, e.g., the discretized signal sd[l] ∈ C for l ∈ {1, . . . , L − 1}
and some L ∈ N. In this discrete domain, the translation operator
acts circularly, i.e., sd[l−m] is interpreted as sd[mod(l−m,L)].

DAFX-2



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

We mimic the dilation operator by sampling the continuous fre-
quency response of the mother wavelet ψ ∈ L2(R)∩L1(R) at the
appropriate density: Assuming the sampling rate ξs, the frequency
response of the wavelet at scale y = ξb/ξ is simply

ψ̂y[k] = ψ̂

(
yξsk

L

)
= ψ̂

(
ξbξs
L

k

ξ

)
,

for k ∈ {−bL/2c, . . . , dL/2e − 1}. In practice, we only cover
a finite range of scales and to cover the entire frequency range,
we introduce an additional low-pass function in the style of [6,
Sec. 3.1.2].

The entire wavelet system is characterized by the minimum
scale ym ∈ R+, the scale step 21/B , with B ∈ R+, the number of
scalesK ∈ N, and the decimation1 factor ad ∈ N, with ad|L. The
corresponding scaled and shifted wavelets are given as

ψn,k = Tnadψ2k/Bym
(11)

for k ∈ {0, . . . ,K − 1} and n ∈ {0, . . . , L/ad − 1}. A plateau
function Plp ∈ CL, centered at 0, specifies the low-pass function
as

ψ̂lp = a−1
d PlpΨlp, (12)

where

Ψlp =
√

max(Ψ)−Ψ, Ψ =

K−1∑
k=0

|ψ̂0,k|2. (13)

An analysis with the constructed system yields LK/ad com-
plex-valued coefficients for the wavelet scales and additionalL/ad
real-valued coefficients for the low-pass function, for a total redun-
dancy of (2K + 1)/ad when analyzing signals with no negative
frequency content. With a slight abuse of terminology, we will
from now on refer to the proportional quantity K/ad as the redun-
dancy.

In the following, we will assume that ψ satisfies (4) with β =
0 and γ = 1. The adaptation to general β and γ is straightforward,
but lowers readability, so we leave it to the reader. For general
wavelets, we have to determine the appropriate value of α by com-
paring the chosen mother wavelet to ψ(α) for varying α and select
the best match, see Section 4.

Assume that the continuous-time signal s is approximately
band- and time-limited on [0, ξs[ and [0, L/ξs[, respectively. Then,
with sd[l] = s(l/ξs), for l ∈ {0, . . . , L− 1}, ad = aξs ∈ N, and
ξk = 2−k/Bξb/ym, we obtain the approximation

Ms[n, k] := |〈sd, ψn,k〉| ≈ ξsM̃s
ψ(na, ξk). (14)

Using (14), we can formulate a discrete approximation of the phase-
magnitude relations (9) and (10). Note that normalization by ξs
becomes irrelevant after taking the logarithmic derivative in (14).
As a substitute for the continuous partial derivatives, we take ∆n

and ∆k to be an appropriate discrete differentiation scheme. Our
implementation relies on (weighted) centered differences:

∆n(Ms)[n, k] :=
ξs(Ms[n+ 1, k]−Ms[n− 1, k])

2ad
, (15)

∆k(Ms)[n, k] :=
Ms[n, k + 1]−Ms[n, k]

2(ξk+1 − ξk)

+
Ms[n, k]−Ms[n, k − 1]

2(ξk − ξk−1)
. (16)

1For simplicity, we restrict here to uniform decimation.

Here, weighted centered differences are used in ∆k, since the sam-
pling step in the scale coordinate changes depends on k. For border
points, i.e., n ∈ {0, N − 1} and k ∈ {0,K − 1}, respectively, the
appropriate forward or backward differences are used instead.

If we combine (14) with the phase-magnitude relations (9) and
(10), we obtain

∂

∂x
φ̃sψ(na, ξk) =

4πξ2k
α− 1

∂

∂ξ
log(M̃s

ψ)(na, ξk) + 2πξk

≈ ∆φ̃,x,s
ψ [n, k] :=

4πξ2k
α− 1

∆k(log(Ms))[n, k] + 2πξk, (17)

and

∂

∂ξ
φ̃sψ(na, ξk) =− α− 1

4πξ2k

∂

∂x
log(M̃s

ψ)(na, ξk)

≈ ∆φ̃,ξ,s
ψ [n, k] :=− α− 1

4πξ2k
∆n(log(Ms))[n, k]. (18)

Now, from ∆φ̃,x,s
ψ and ∆φ̃,ξ,s

ψ , an estimate of the phase of
W̃ψs at the sampling points {(na, ξk)}n,k can be obtained us-
ing a quadrature rule considering the variable sampling intervals.
The provided implementation relies on simple 1-dimensional trap-
ezoidal quadrature. This results in the following integration rule
on the set of neighbors of (n, k), i.e., (nn, kn) ∈ Nn,k := {(n ±
1, k), (n, k ± 1)} ∩ {0, . . . N − 1} × {0, . . . ,K − 1}.

(φ̃sψ)est[nn, kn]

= (φ̃sψ)est[n, k] +
ξkn − ξk

2

(
∆φ̃,ξ,s
ψ [n, k] + ∆φ̃,ξ,s

ψ [nn, kn]
)

+
ad(nn − n)

2ξs

(
∆φ̃,x,s
ψ [n, k] + ∆φ̃,x,s

ψ [nn, kn]
)
. (19)

When inserting (15) and (16) into (19), the absolute scale of the
center frequencies ξk and sampling rate ξs becomes unimportant
and only their ratio enters the quadrature (19). Hence, by consider-
ing relative frequencies ξk/ξs, the algorithm is valid independent
of the assumed sampling rate.

However, the integration step itself is not entirely straightfor-
ward. As discussed in [7] and [10], phase estimation from mag-
nitude-only measurements is generally highly unstable when the
coefficients are close to 0. To avoid these instabilities, the work
[24] introduced the Phase Gradient Heap Integration (PGHI) algo-
rithm, originally for Gabor phase reconstruction. The algorithm
adaptively applies a given integration rule, starting at coefficients
of large magnitude and avoiding areas of low magnitude. In the
pseudo-code shown in Algorithm 1 it is assumed that all wavelet
coefficients are available at all times, similar to [24] and [26].

Once the phase estimate (φ̃sψ)est has been computed, it is com-

bined with the magnitude by Ws := Mse
i(φ̃sψ)est and a time-

domain signal is obtained by performing a regular synthesis step.

4. EXPERIMENTS

The performance of wavelet PGHI with Cauchy WTs was exten-
sively evaluated on the EBU SQAM database [39] in [21], see also
http://ltfat.github.io/notes/053/. Here, we eval-
uate the performance of wavelet PGHI with mother wavelets dif-
fering from the Cauchy wavelet. To this end, we selected a var-
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Algorithm 1: Wavelet Phase Gradient Heap Integration
Input: Magnitude Ms of wavelet coefficients, estimates

∆φ̃,x,s
ψ and ∆φ̃,ξ,s

ψ of the partial phase derivatives,
relative tolerance tol .

Output: Phase estimate (φ̃sψ)est.
1 abstol ← tol ·max (Ms[n, k]);
2 Create set I = {(n, k) : Ms[n, k] > abstol};
3 Assign random values to (φ̃sψ)est(n, k) for (n, k) /∈ I;
4 Construct a self-sorting max heap [38] for (n, k) pairs;
5 while I is not ∅ do
6 if heap is empty then
7 Move (nm, km) = arg max

(n,k)∈I
(Ms[n, k]) from I

into the heap;
8 (φ̃sψ)est(nm, km)← 0;
9 end

10 while heap is not empty do
11 (n, k)← remove the top of the heap;
12 foreach (nn, kn) inNn,k ∩ I do
13 Compute (φ̃sψ)est(nn, kn) by means of (19);
14 Move (nn, kn) from I into the heap;
15 end
16 end
17 end

ied subset of 15 signals from the EBU SQAM database,2 includ-
ing signals that were reported as critical in previous contributions
[24, 21]. The chosen subset contains synthetic signals, solo instru-
ments, speech, and music.

We performed 3 experiments, derived from the experimen-
tal protocol in [21] so that results are comparable between stud-
ies. The experiments are described and discussed below. For
wavelet analysis and synthesis, we used the filter bank methods
in the open source Large Time-Frequency Analysis Toolbox (LT-
FAT [40], http://ltfat.github.io/), where our imple-
mentation of wavelet PGHI is available by using the ’wavelet’
flag in filterbankconstphase. A function to generate the
wavelet filters and scripts for generating the individual experiments
are provided on http://ltfat.github.io/notes/055/,
together with audio examples for all experiment conditions. The
functionality represented by the supplied code is to be integrated
into the next release of the LTFAT Toolbox.

In Experiments I and II, we consider the following wavelet
types in addition to the Cauchy wavelet: Morlet wavelets, gener-
alized Morse wavelets [41] with symmetry parameter γ ∈ {2, 3}
and bandlimited wavelets generated in the Fourier domain as car-
dinal B-spline of order m ∈ {3, 5}. The latter have previously
been called frequency B-spline wavelets [42]. Note that Cauchy
wavelets are generalized Morse wavelets with γ = 1. For γ = 3,
the generalized Morse wavelet is also known as Airy wavelet. In
each case, the remaining parameters were adapted to match the
bandwidth of Cauchy wavelets of the desired order (α− 1)/2. In
Experiment III, we consider wavelets with compact support in the
time domain, namely exponentially modulated B-splines. Here,
we fixed the B-spline order m = 4. In Table 1, we list all the used

2The chosen signals are as follows: 01, 02, 04, 14, 15, 16, 27, 39, 49,
50, 51, 52, 53, 54, 70. For each signal, tests were performed on the first 5
seconds of the signal.

wavelet types, their parameters and their Fourier transform ψ̂.
The decimation step ad and the number of frequency channels

K (without the lowpass filter) were chosen equal to those used for
the matched Cauchy wavelet. As quantitative error measure, we
employ (wavelet) spectral convergence [43], i.e., the relative mean
squared error (in dB) between the wavelet coefficient magnitude
of the target signal st and the proposed solution sp:

SC(sp, st) = 20 log10

‖Msp −Mst‖
‖Mst‖

.

It should be noted that the wavelet coefficient magnitude in the
above formula was computed using the same parameter set for
which phaseless reconstruction was attempted. There is no unique
method to match the Cauchy wavelet parameter α to another type
of mother wavelet. We use a procedure that determines α such
that the peak-normalized frequency responses of a given mother
wavelet ψ and a Cauchy wavelet ψ(α) of order (α− 1)/2 with the
same central frequency have the same width at a given threshold
height hthr > 0. The value of α is computed by the MATLAB
function wpghi_findalpha.m, supplied on the project web-
page http://ltfat.github.io/notes/055/.

4.1. Experiment I—Comparison to Fast Griffin-Lim

To study the performance of the proposed algorithm for various
mother wavelets and parameter settings, we compare wavelet PGHI
to the iterative fast Griffin-Lim [16, 27] algorithm. The experimen-
tal protocol is similar to Experiment I in [21]. The Cauchy WT
serves as a baseline comparison, it is specified by the parameter
tuple (α, ad,K). In this experiment, we considered the follow-
ing settings: (30, 10, 100), (300, 24, 240), and (3000, 40, 400),
leading to a fixed redundancy3 K/ad = 10. For all settings,
the channel center frequencies where geometrically spaced in ξs

20
·

[2−6, 23.3]. Matching the other wavelet types to the given values
of α, we obtained the parameters given in Table 2.

We compare three different methods: wavelet PGHI (WPGHI,
proposed), fast Griffin-Lim with zeros initialization (0-FGLIM,
[27]) and fast Griffin-Lim initialized with the result of WPGHI
(W-FGLIM). Fast Griffin-Lim was restricted to at most 40 iter-
ations. Nonetheless, it should be noted that the execution time of
WPGHI is a small fraction of the time required for either 0-FGLIM
or W-FGLIM. Maximum, median, and minimum values for spec-
tral convergence of the three methods are shown in Figure 1 for the
different parameter sets (α, ad,K).

The 0-FGLIM baseline shows the most stable performance
across conditions, with little dependence on the mother wavelet or
the parameter α. On the tested signals, it also shows the least de-
pendence on the signal content, with 7–10 dB difference in spectral
convergence between the best and worst result on any fixed con-
dition. Notably, 0-FGLIM performs slightly better for the lowest
value of α, i.e., the wavelets with worst frequency resolution.

The median performance of WPGHI is better than 0-FGLIM
for α ∈ {300, 3000}, but not for α = 30, except when the Cauchy
wavelet is used. At low values of α, the Cauchy wavelet is very
asymmetric, and thus most different from the other considered
mother wavelets. That the Morse wavelet with γ = 3 performs
second best for α = 30 gives further indication that the perfor-
mance of WPGHI depends, as expected, on the closeness of the

3In [21], the redundancy K/ad = 20 was used, but Experiment II in
[21] suggests that K/ad = 10 still provides excellent performance of all
methods.
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Wavelet name Parameters Fourier transforms ψ̂(ξ)

Generalized Morse (M•) α > 1, γ > 0 cα,γ · ξ(α−1)/2e−2πξγ

Morlet (M) σ > 0 cσ · (e−(σ−ξ)2/2 − e−(σ2+ξ2)/2)

Frequency B-spline (FB•) m ∈ N, ξfb ≥ 2 cm,ξfb ·Bm(ξ −mξfb/4)

Modulated B-spline (MB•) m ∈ N, ξfm ∈ N cm,ξfm · sin(π(ξ − ξfm))m/(π(ξ − ξfm))m

Table 1: Wavelets used in the experiments. The symbol • is a placeholder for γ or m in the Generalized Morse and B-Spline wavelets, i.e.,
M3 denotes a Morse wavelet with γ = 3. For γ = 1, the generalized Morse wavelet yields the Cauchy wavelet. The parameter σ of the
Morlet wavelet is related to the center frequency and controls the time/frequency resolution trade-off. The parameter m of the B-Spline
type wavelets denotes the order of the generating B-spline (a B-Spline of order m is a piecewise polynomial of order m− 1). ξfb and ξfm
denote the center frequency to bandwidth and center frequency to main lobe width, respectively. The restriction ξfm ∈ N guarantees that
the modulated B-spline satisfies ψ̂(0) = 0 and is admissible.

Wavelet / Cauchy α ≈ 30 ≈ 300 ≈ 3000 ≈ 1000

M2, α = 28.93 298.93 2998.93 999

M3, α = 28.45 298.55 2998.45 999

M, σ = 3.79 12.25 38.78 22.38

FB3, ξfb = — 4.32 13.70 7.90

FB5, ξfb = — 3.25 10.30 5.94

Table 2: Wavelets parameters to match a given Cauchy parameter
α ∈ {30, 300, 3000} used in Experiment I and α = 1000 used
in Experiment II. Note that α ≈ 30 cannot be achieved with the
frequency B-Spline wavelet of order m ∈ {3, 5}.

mother wavelet to the Cauchy wavelet with the value of α, for
which the phase-magnitude relations (17) and (18) are invoked.

As expected, WPGHI performs worse when the Cauchy wavelet
is not used, but at large values of α, the difference in median and
worst values is small. Over all values of α, the Frequency B-Spline
wavelet of order m = 3 performs worst, and the Morse wavelet
with γ = 2 performs closest to the Cauchy wavelet. The large
range of values for WPGHI corroborates the observations from
[21] that WPGHI performance can depend significantly on the
signal content, for all chosen mother wavelets. Furthermore, the
best performance seems to depend heavily on the chosen mother
wavelet and its closeness to the Cauchy wavelet. Initializing fast
Griffin-Lim with the result of WPGHI (W-FGLIM) shows signifi-
cant improvements over either WPGHI or 0-FGLIM in all consid-
ered scenarios. In most cases, the final performance of W-FGLIM
seems to be proportional to the quality of the WPGHI initializa-
tion.

Informal listening mostly confirmed the numerical results. At
α ∈ {300, 3000}, all methods produce little to no audible distor-
tion, with the exception of 0-FGLIM for simple signals such as
synthetic sine waves where the defect is still clearly audible. At
α = 30, WPGHI sometimes produces results that are perceptually
worse when the Cauchy wavelet is not used, but nonetheless, dis-
tortions were often more severe in 0-FGLIM, despite contradict-
ing numerical results. The results of W-FGLIM provide excellent
quality, even at α = 30, where the individual methods may fail to
do so.

4.2. Experiment II—Changing the Redundancy

In a second set of experiments, we investigate the influence of the
redundancy K/ad on the performance of the proposed methods
WPGHI and W-FGLIM. Once more, the experiment follows the

protocol established in Experiment II in [21], but with the main
aim to compare performance across different mother wavelets. We
fix α = 1000 and once more match the parameters of all alter-
native mother wavelets, see Table 2. The considered redundan-
cies are K/ad ∈ {3, 5, 10}. In contrast to [21], we do not con-
sider K/ad = 30, as the results were rather close to the case
K/ad = 10 and the same is expected here.

We fix the following parameter sets (α, ad,K) for the Cauchy
wavelet baseline: low redundancy (1000, 30, 90), medium redun-
dancy (1000, 25, 125), high redundancy (1000, 18, 180). Simi-
lar to Experiment I, median value, maxima, and minima over the
test set are presented in Figure 2 for all parameter sets and mother
wavelets. As expected, performance of both proposed methods
decreases at lower redundancy, but median performance at low
redundancy is still decent. Both median and worst performance
shows little dependence on the mother wavelet, due to the cho-
sen large value of α, at which all considered mother wavelets are
reasonably close to the Cauchy wavelet. Some influence of the
mother wavelet is still apparent in the best values of spectral con-
vergence. Especially for plain WPGHI, the Cauchy wavelet is still
at an advantage. At any redundancy, W-FGLIM yields a significant
improvement over plain WPGHI, but at low redundancy, the addi-
tional Griffin-Lim iteration only marginally improves the recon-
struction on signals for which WPGHI performs badly. Perceptual
quality is excellent over all redundancies. Only at low redundancy,
minor distortions were observed.

4.3. Experiment III—Towards WPGHI with Bounded Delay

The implementation of a bounded delay framework for wavelet
analysis and synthesis is more involved than for the short-time
Fourier transform and not the objective of this contribution. Nonethe-
less, we want to indicate some steps that can be taken to enable the
use of WPGHI within such a framework. First, we need to show
that WPGHI produces good results in conjunction with mother
wavelets that are compactly supported in the time domain and thus
necessarily ψ̂(ξ) = 0 for all ξ ∈ R− cannot be satisfied.

To this end, we repeat Experiment I with a modulated B-spline
of fixed order 4 as mother wavelet ψ. Due to the restriction of
the parameter ξfm to positive integers, it is not possible to con-
struct complex-modulated B-spline wavelets that match a Cauchy
wavelet of arbitrary order (α−1)/2. Instead we choose values for
the center frequency to main lobe width ratio ξfm and compute the
matching Cauchy parameter α. The resulting parameter values are
shown in Table 3.

The Fourier transform ψ̂ of the modulated B-Spline is sym-
metric around its peak. Hence, the lowest value of ξfm corre-
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C α300

M α300

M2 α300

M3 α300

FB3 α300

FB5 α300

C α3000

M α3000

M2 α3000

M3 α3000

FB3 α3000

FB5 α3000

Spectral Convergence

WPGHI 0-FGLIM W-FGLIM

Figure 1: Results of Experiment I for wavelet PGHI and fast Grif-
fin Lim for Cauchy α ∈ {30, 300, 3000} and all tested wavelets.
The minimal, median, and maximal spectral convergences over the
15 test signals are depicted.

sponds to a small Cauchy wavelet parameter α, i.e., a rather asym-
metric Cauchy wavelet. Thus, the average performance of WPGHI
is expected to be inhibited for the modulated B-Spline. While this
is certainly apparent in the results, see Figure 3, reconstruction
quality is still decent. At higher values of ξfm, the difference be-
tween WPGHI performance for the two tested mother wavelets
becomes increasingly negligible and reconstruction performance
becomes competitive with or even better than the iterative fast
Griffin-Lim algorithm. For the sake of completeness, we also
show results for W-FGLIM, which continues to outperform both
competing methods. Generally speaking, the results are, not unex-
pectedly, very similar to those obtained in Experiment I. The same
is true for perceptual performance, where differences between the
wavelets (in line with numerical results) have been observed al-
most exclusively for ξfm = 1.

Both 0-FGLIM and W-FGLIM involve iteration relying on
many wavelet analysis and synthesis steps. On the other hand,
the computations necessary for WPGHI are elementary and can be
adapted to a real-time (bounded delay) setting easily. This has pre-
viously been shown for the short-time Fourier transform in [28].

−50 −40 −30 −20 −10

C R10

M R10

M2 R10

M3 R10

FB3 R10

FB5 R10

C R5

M R5

M2 R5

M3 R5

FB3 R5

FB5 R5

C R3

M R3

M2 R3

M3 R3

FB3 R3

FB5 R3

Spectral Convergence

WPGHI W-FGLIM

Figure 2: Results of Experiment II for wavelet PGHI and all tested
wavelets at redundancies K/ad ∈ {10, 5, 3}. The minimal, me-
dian, and maximal spectral convergences over the 15 test signals
are depicted.

We close this contribution with Algorithm 2, which demonstrates
the changes necessary to adapt WPGHI to such a setting. This al-
gorithm computes a phase estimate (φ̃sψ)est[n, ·] using the phase
gradient at time positions n − 1 and n and relying on a previ-
ously computed phase estimate for (φ̃sψ)est[n − 1, ·], for n =
1, . . . , N − 1. Assuming that the phase and phase derivative at
time−1 are identically 0, it can also be used to initialize the phase
estimate for (φ̃sψ)est[0, ·] from scratch.

5. CONCLUSION

We have presented a non-iterative method for reconstruction from
magnitude-only wavelet coefficients, relying on the phase-magnitude
relations for WTs with Cauchy-type mother wavelet, recently in-
troduced in [21]. The resulting algorithm is computationally highly
efficient and often performs on par or better than previous itera-
tive schemes, for which it can also serve as an initialization. The
latter initialization has been shown to boost the performance of
either method used individually. In the presented experiments we
showed that the theoretical restriction to Cauchy-type mother wavelets
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Cauchy, α = 29.7 257.0 2841.7

Mod. B-spline, m = 4, ξfm = 1 3 10

Table 3: Wavelet parameters used in Experiment III. Each col-
umn lists matching parameters between the Cauchy wavelet and
the modulated B-spline of order m = 4.

−50 −40 −30 −20

C ξ1

MB4 ξ1

C ξ3

MB4 ξ3

C ξ10

MB4 ξ10

Spectral Convergence

WPGHI 0-FGLIM W-FGLIM

Figure 3: Results of Experiment III for wavelet PGHI and fast
Griffin Lim for Cauchy and complex modulated B-spline wavelets.
The minimal, median, and maximal spectral convergences over the
15 test signals are depicted.

becomes a soft restriction in practice. In other words, the method
can be successfully applied for other types of mother wavelet, pro-
vided they are reasonably close to some Cauchy wavelet. Although
this closeness to a Cauchy wavelet limits the performance of the
algorithm when other wavelets are used, the obtained results for
a small, but varied corpus of audio data are very promising. Fi-
nally, we indicated the steps that are necessary for introducing the
proposed method into a bounded delay wavelet analysis/synthesis
system, similar to what has been done for the short-time Fourier
transform in [28].
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