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Abstract. The Large Time Frequency Analysis Toolbox (LTFAT) is
a modern Octave/Matlab toolbox for time-frequency analysis, synthe-
sis, coefficient manipulation and visualization. It’s purpose is to serve
as a tool for achieving new scientific developments as well as an edu-
cational tool. The present paper introduces main features of the second
major release of the toolbox which includes: generalizations of the Gabor
transform, the wavelets module, the frames framework and the real-time
block processing framework.
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1 Introduction

Time-Frequency analysis is a very important tool for signal processing and its
applications in audio, video and acoustics. It allows a representation showing
simultaneously (to some extent) the frequency and time content of a signal.
Typical representations are the Gabor [16] or wavelet [17] transforms. In recent
years more flexible transforms, in the form of adapted and adaptive represen-
tations were a very active topic of research, see e.g. [3]. For all those concepts
the mathematical theory of frames has proven to be highly significant, as frames
allow a very flexible approach, a wide range of possible analysis parameters and
properties, while still guaranteeing perfect reconstruction. For applications in
particular the implementation of related algorithms are important, an efficient,
and possibly real-time, realization being preferable. For a reproducible research
it is important to have a stable, well-documented toolbox.

Dealing with those concepts, LTFAT is an open-source Matlab/Octave tool-
box freely available at http://ltfat.sourceforge.net/. The toolbox is well
documented both in the code itself and in the form of a documentation web
page.



The features of the first version of the toolbox were presented in [37] which
was focused mainly on the Discrete Gabor Transform – DGT and window design.
This paper focuses on the new additions, which are generalizations of the Gabor
transform, both changing the lattice, as well as allowing varying windows; the
wavelet modules, including wavelet filterbank trees and wavelet packet trans-
forms; the frames framework, also dealing with multipliers and sparsity; and
real-time block processing. The rest of the paper is organized as follows: Section
2 gives a brief overview of the frame theory in a finite setting and introduces
the frames framework which allows users to effectively work with different trans-
forms using a common interface. Sections 3 and 4 describe generalizations of
Gabor systems to systems defined on non-separable and on non-regular time-
frequency grids respectively. Section 5 deals with the discrete wavelet transform
and derived algorithms. Section 7 provides examples for those sections. Section
6 contains description of several algorithms generalizing the Fourier transform.
Section 8 describes the block-stream processing framework which enables real-
time audio processing directly in Matlab/Octave. Section 9 discusses the design
of the toolbox and states further plans.

1.1 Notation

To be consistent with [37], we use the same notation and assumptions. We re-
gard all signals, windows and transforms as finite-dimensional and periodic. This
assumption greatly simplifies the formulas and produces the fastest algorithms
but at the same time introduces an unnatural behavior at signal boundaries. The
signals are represented as vectors x = {x(0), x(1), . . . , x(L− 1)} ∈ CL which are
assumed to be column vectors with cyclic indexing such that x(l + kL) = x(l)
for l, k ∈ Z. By x we denote a complex conjugation of each element in x.
The scalar product on CL is defined as 〈x, y〉 =

∑L−1
l=0 x(l)y(l) and the in-

duced norm as ‖x‖ =
√
〈x, x〉. A linear operator O : CL −→ CM is repre-

sented by a M × L matrix vector multiplication (Ox)(m) =
∑L−1
l=0 o(m, l)x(l)

for m ∈ {0, . . . ,M − 1}. All operators mentioned are linear. Finally, we denote

x̂(k) = 1√
L

∑L−1
l=0 x(l)e−2πikl/L for k ∈ {0, . . . , L− 1} as a (unitary) Discrete

Fourier Transform (DFT) of x.
Here we give a brief summary of the DGT which maps a signal f ∈ CL to

a set of coefficients c ∈ CM×N using (circular) time shifts and modulations of a
window g ∈ CL such that

c (m,n) =

L−1∑
l=0

f(l)e−2πilm/Mg(l − an) (1)

assuming L = Mb = Na. Here M denotes the number of frequency channels and
a denotes the time step or a hop size in samples. The input length restrictions can
be handled either by truncating or by padding4 of f . The coefficients capture

4 The toolbox does a zero padding implicitly.



a time-frequency representation of the signal allowing one to study its time-
frequency distribution. The choice of g, a and M determines the time-frequency
localization of the signal. The windows g can be either full-length or be nonzero
only on some smaller interval (FIR). In order to be able to reconstruct signals
from their coefficients, MN ≥ L is required. This condition is necessary for the
system

gm,n(l) =
{

e2πilm/Mg(l − an)
}

(2)

with m ∈ {0, . . . ,M − 1}, n ∈ {0, . . . , L/a− 1} and l ∈ {0, . . . , L− 1} to form a
Gabor frame for CL, see also Section 2. In this case, the reconstruction can be
done using the same parameters a, M but this time using a dual window g̃ such
that

f(l) =

N−1∑
n=0

M−1∑
m=0

c(m,n)e2πiml/M g̃(l − an) . (3)

The fact that the (canonical) dual frame of a Gabor frame has the same structure
is a central property of Gabor frames. An overview of the theory of Gabor frames
can be found in [21].

Actual Matlab/Octave functions are referred to in a typewriter style (fun-
ctionname).

2 The Frames Framework

A frame in CL is a collection of vectors Ψ = {ψλ}λ∈{0,...,Λ−1}, ψλ ∈ CL such
that frame bounds 0 < A ≤ B <∞ exist with

A‖f‖2 ≤
Λ−1∑
λ=0

|〈f, ψλ〉|2 ≤ B‖f‖2,

for all f ∈ CL. A frame is redundant (oversampled) if Λ > L and it is called
tight if A = B. The basic operators associated with frames are the analysis and
synthesis operators which take the form of matrix multiplications. The analysis
operator acts as follows: c = CΨf = {〈f, ψλ〉}λ∈{0,...,Λ−1}, where c ∈ CΛ is a

Λ× 1 vector, CΨ ∈ CΛ×L is a Λ× L matrix

CΨ =


− ψ0 −
− ψ1 −

...

− ψΛ−1 −


and f ∈ CL is a L × 1 vector. The synthesis operator act as f = DΨ c =∑Λ−1
λ=0 c(λ)ψλ, where DΨ ∈ CL×Λ is a L×Λ matrix being the conjugate transpose

of the analysis matrix such that DΨ = C∗Ψ . Their concatenation SΨ = DΨCΨ

is referred to as the frame operator SΨ ∈ CL×L. Any frame admits a, possibly



non-unique, dual frame, i.e. a frame Ψd such that the identity can be represented
as I = DΨdCΨ = DΨCΨd . The most widely used dual is the so called canonical
dual that can be obtained by applying the inverse frame operator S−1Ψ to the
frame elements. When we prefer to have a tight system for both analysis and
synthesis, we can instead use the canonical tight frame Ψ t = {ψt

λ}λ∈{0,...,Λ−1},

defined by ψt
λ = S

− 1
2

Ψ ψλ and satisfying I = DΨtCΨt . See e.g. [2] for more detailed
description of frames in the finite setting.

It is usually not computationally feasible to work with the matrices directly,
when considering processing e.g. audio signals, as they normally consist of many
thousand samples. Therefore, the frames framework provides an operator-like
interface for working with frames without explicitly creating the matrices ex-
ploiting fast algorithms whenever they are possible.

2.1 Frames and Object Oriented Programming

The notion of a frame fits very well with the notion of a class in the object
oriented programming paradigm. A class is a collection of methods and variables
that together form a logical entity. A class can be derived from another class, in
such a case that the derived class inherits properties of the original class, and
it can extend them in some way. It can supply an implementation of abstract
methods or override the existing ones. The derived class can still be referred to
as the parent class and thus the same code can be used to work with different
derived classes in a unified way. In the frame framework presented in this paper,
the frame class serves as the abstract base class from which all other classes are
derived. In the following text, we give an overview of the framework interface.

An object of type frame is instantiated by the user providing information
about which type of frame is desired, and any additional parameters (like a
window function, the number of channels etc.) necessary to construct the frame
object. This is usually not enough information to construct a frame for CL in the
mathematical sense, as the dimensionality L of the space is not supplied. Instead,
when the analysis operator of a frame object is presented with an input signal,
it determines a value of L larger than or equal to the length of the input signal
and only at this point is the mathematical frame fully defined. The construction
was conceived this way to simplify work with different signal lengths without
the need for a new frame for each signal length.

Therefore, each frame type must supply the framelength method, which
returns the next larger length for which the frame can be instantiated. For
instance, a dyadic wavelet frame with J levels only treats signal lengths which
are multiples of 2J . An input signal is simply zero-padded until it has admissible
length, but never truncated. Some frames may only work for a fixed length L.

The frameaccel method will fix a frame to only work for one specific space
CL. For some frame types, this involves precomputing the data structures to
speed up the repeated application of the analysis and synthesis operators. This
is highly useful for iterative algorithms, block processing or other types of pro-
cessing where a predetermined signal length is used repeatedly.



Basic information about a frame can be obtained from the framebounds

methods, returning the frame bounds, and the framered method returning the
redundancy Λ

L of the frame.

2.2 Analysis and Synthesis

The workhorses of the frame framework are the frana and frsyn methods, pro-
viding the analysis and synthesis operators CΨ , DΨ of the frame Ψ respectively.
These methods use a fast algorithm if available for the given frame. They are the
preferred way of interacting with the frame when writing algorithms. However,
if a direct access to the operators is needed, the frsynmatrix method returns a
matrix representation of the synthesis operator.

The framedual and frametight methods represent the S−1Ψ and S
− 1

2

Ψ oper-
ators respectively. Again, the matrices are not created and inverted explicitly
if a fast algorithm exists. For some frame types, e.g. filterbank and nsdgt,
the canonical dual frame is not necessarily again a frame with the same struc-
ture, and therefore it cannot be realized with a fast algorithm. Nonetheless,
analysis and synthesis with the canonical dual frame can be realized iteratively.
The franaiter method implements iterative computation of the canonical dual
analysis coefficients using the frame operator’s self-adjointness via the equation
〈f,S−1Ψ ψλ〉 = 〈S−1Ψ f, ψλ〉. More precisely, a conjugate gradient method (pcg)
is employed to apply the inverse frame operator S−1Ψ to the signal f iteratively,
such that the analysis coefficients can be computed quickly by the frana method.
Note that each conjugate gradient iteration applies both frana and frsyn once.
The method frsyniter works in a similar fashion to provide the action of the
inverse of the frame analysis operator. Furthermore, for some frame types the
diagonal of the frame operator S calculated by framediag can be used as a
preconditioner, providing significant speedup whenever the frame operator is
diagonally dominant, see e.g. [6].

While both methods franaiter and frsyniter are available for all frames,
they are recommended only if no means of efficient, direct computation of the
canonical dual frame exists or its storage is not feasible. Their performance is
highly dependent on the frame bounds and the efficiency of frana and frsyn

for the frame type used.

2.3 Advanced Operations with Frames

A frame multiplier [4] is an operator constructed by multiplying frame coeffi-
cients with a symbol s ∈ CΛ such that

Msf =

Λ−1∑
λ=0

s(λ) 〈f, ψa
λ〉ψs

λ,

where ψa
λ and ψs

λ are simply the λth elements of the analysis and synthesis
frames, respectively. The analysis and synthesis frames need not be of the same



type, but they must have exactly the same redundancy. Under which conditions
a frame multiplier is invertible, and when this again is a frame multiplier, are
non-trivial questions [39, 40]. In the LTFAT the inverse iframemul is generally
computed iteratively by a conjugate gradient method pcg.

For a frame Ψ and an input signal f ∈ CL, the franalasso function returns
coefficients c ∈ CΛ which minimize the following objective function

1

2
‖f −DΨ c‖2 + γ ‖c‖1 , (4)

where ‖c‖1 =
∑Λ−1
λ=0 |c(λ)| and γ ≥ 0 is a penalization coefficient which controls

a tradeoff between the “sparsity” of c and the approximation error. The actual
minimization is done using the Fast Iterative Soft Thresholding algorithm [8,13].
Another function franagrouplasso works similarly but the objective function
employs a mixed norm [24] enforcing sparsity along the time or the frequency
axis. Currently, this routine only works with frames which have a regular time-
frequency distribution of atoms.

Sometimes, the phase of the frame coefficients is lost. For a generic frame
more than 4 times redundant, the signal can be reconstructed from the magni-
tude of the coefficients only [1]. The frsynabs function attempts to reconstruct
the signal using the iterative Griffin-Lim algorithm [20] or it’s fast version [29].

Examples for the mentioned operations can be found in Sec. 7.

3 Discrete Gabor Transform on Non-separable Grids

The parameters a and M used in the classical DGT result in a regular, i.e.
rectangular grid in the time-frequency plane. On the other hand, Gabor systems
on general subgroup lattices Λ ≤ ZL × ZL retain all theoretical properties of
Gabor systems on rectangular grids, e.g. that the canonical dual of any Gabor
frame is again a Gabor frame with respect to the same lattice.

A general lattice can be uniquely defined by using a third parameter λ =
λ1/λ2 in addition to a and M . The lattice type λ is an irreducible fraction
describing the displacement of neighboring (nonempty) columns in the lattice,
relative to the frequency shift L

M , see Fig. 1 for an illustration. The corresponding
Gabor system is

gm,n(l) =
{

e2πi(m+w(n))l/Mg(l − an)
}
, (5)

withm,n as before and w(n) = mod(nλ1, λ2)/λ2. More details on Gabor systems
on general lattices and their implementation can be found in [44].

In the toolbox, both the classical and the non-separable DGT are available
as dgt, idgt and dual Gabor windows can be computed with gabdual. For
rectangular and quincunx grids only, dgtreal and idgtreal facilitate analysis
and synthesis of purely real-valued signals, ignoring time-frequency coefficients
on negative frequency channels.
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(a) λ1/λ2 = 0
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(b) λ1/λ2 = 1/2
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(c) λ1/λ2 = 1/3
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(d) λ1/λ2 = 2/3

Fig. 1. The figure shows the placement of the Gabor atoms for four different lattice
types in the time-frequency plane. The displayed Gabor system has parameters a = 6,
M = 6 and L = 36. The lattice (a) is called rectangular or separable and the lattice (b)
is known as the quincunx lattice.

4 Nonstationary Discrete Gabor Transform and
Filterbanks

The nonstationary Gabor transform (NSGT) theory [5] generalizes the classical
Gabor theory, where the window g, the time step a and the number of frequency
channels M are fixed; to systems with evolving properties over either time or
frequency. A central result of [5] is the definition of conditions on the window
properties which result in painless nonstationary Gabor frames which admit an
efficient computation of the canonical dual system with the same structure. In
this setup, the frame operator is diagonal and its inversion is a simple operation.
In the non-painless case, reconstruction is still possible, assuming the system is
a frame, but computation of the dual system is not straightforward and it might
not retain the original structure.

The painless conditions can be applied either in time or in frequency domain.
To avoid confusion, both cases will be shown separately.

4.1 Changing Resolution over Time

Instead of a single window with the fixed time step a, assume a set of N win-
dows {gn}n∈{0,...,N−1}, with gn centered around the origin and considering Mn

frequency channels. The resulting discrete nonstationary Gabor system is given
by

gm,n(l) =
{

e2πi(l−an)m/Mngn(l − an)
}
, (6)

for n ∈ {0, . . . , N − 1} ,m ∈ {0, . . . ,Mn − 1} and l ∈ {0, . . . , L− 1}. In contrast
to (2) the complex exponentials shift along with the windows due to the (l−an)
term. This phase locked convention was chosen to simplify the impementation.
The system is painless given the following conditions are satisfied:

1. Each of the windows gn is compactly supported with support length being
less or equal to Mn. This means that the windows have nonzero values only
in some area around the time position.



2. The adjacent windows overlap so that 0 < A ≤
∑N−1
n=0 |gn(l − an)|2 ≤ B <

∞, for some positive A and B, for all l ∈ {0, . . . , L− 1}.

Such systems can be designed to adapt the frequency resolution over time
in order to better capture characteristics of an analyzed signal and still provide
perfect reconstruction. The NSGT in this setting is implemented in the toolbox
as nsdgt, its inverse as insdgt.

4.2 Changing Resolution over Frequency

Exploiting the duality in time and frequency domains, we assume M compactly
supported windows {ĝm}m∈{0,...,M−1} in the frequency domain centered around

frequency 0. Again, if the frequency support of each ĝm is less or equal to Nm
and if the windows overlap sufficiently and cover the whole frequency spectrum,
the collection

ĝm,n(l) =
{

e−2πiln/Nm ĝm(l − bm)
}
, (7)

for m ∈ {0, . . . ,M − 1}, n ∈ {0, . . . , Nm − 1} and l ∈ {0, . . . , L− 1} defines the
DFT of painless nonstationary Gabor system atoms. An alternative interpreta-
tion of this result is that {ĝm} are band-limited frequency responses of filters in a
perfect reconstruction filterbank and each of them is followed by a subsampling
operation with a possibly non-integer factor am = L

Nm
. In digital signal process-

ing terms, the analysis filterbank does not introduce aliasing in subbands, and
therefore no aliasing cancellation property of the synthesis filterbank is needed.
This construction proved to be very useful, because it allows designing perfect
reconstruction filterbanks with frequency bands adapted to a specific needs, e.g.
the constant-Q Transform (CQT) in [5]. The filters in a CQT are placed along
the frequency axis with a constant ratio of center frequency to bandwidth, or Q-
factor. This transform is particularly interesting for an acoustic signal processing
because it can be tuned to mimic the musical scale allowing to choose the octave
resolution (number of filters per octave). An example of a CQT spectrogram is
in Fig. 2 on the left.

Another application of the frequency adapted NSGT is the ERBlet trans-
form [27] in which the filters are tuned to mimic the psychoacoustic ERB scale
(erblett). An example of the ERBlet spectrogram is in Fig. 2 on the right.

In the toolbox, the frequency adapted nonstationary Gabor systems are im-
plemented in the context of the more general filterbank and ifilterbank

routines.

4.3 Uniform Nonstationary Gabor Systems

Nonstationary Gabor systems are uniform if Mn = const. or am = const. in the
time and frequency adapted settings respectively. Such systems admit another
way of computing the canonical dual systems by inverting a polyphase frame
matrix [9]. Internally, the toolbox favors the painless algorithm over the uniform
one if both are suitable.
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Fig. 2. Examples of the CQT spectrogram (left) and the ERBlet spectrogram (right)
of an excerpt of the gspi test signal. The figures can be reproduced by running
demo filterbanks.

5 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) associated with a multiresolution anal-
ysis provides a dyadic decomposition of f ∈ CL into J wavelet (detail) bands
dj and a single scaling (approximation) band aJ such that the coefficients are
obtained by

dj(n) =

L−1∑
l=0

f(l)gj(l − 2jn), and aJ(n) =

L−1∑
l=0

f(l)hJ(l − 2Jn) (8)

for n ∈ {0, . . . , Nj − 1}, where Nj = L
2j and j ∈ {1, . . . , J}, assuming L = 2JNJ

for some integer NJ and NJ +
∑
j Nj = L. Here gj , hJ ∈ CL are obtained from

a pair of characteristic basic wavelet vectors, the scaling sequence h1 and the
wavelet sequence g1 recursively such that

hj+1(l) =

Nj−1∑
k=0

h1(k)hj(l − 2jk), gj+1(l) =

Nj−1∑
k=0

g1(k)hj(l − 2jk). (9)

The formulas are sometimes referred to as a discrete scaling. In this dyadic
setting, the DWT is non-redundant and the reconstruction from the coefficients
is possible if h1 and g1 and the dual filters h̃1 and g̃1 form a perfect reconstruction
orthogonal (paraunitary) or biorthogonal filterbank, such that h1 (h̃1) and g1
(g̃1) are half-band low-pass and high-pass filters, respectively. Such filters will
be further referred to as the basic wavelet filters. The dual filters differ from the
original ones only in the biorthogonal case. The reconstruction is given by

f(l) =

J∑
j=1

Nj∑
n=0

dj(n)g̃j(l − 2jn) +

NJ∑
n=0

aJ(n)h̃J(l − 2Jn), (10)

where h̃J and g̃j are derived from the dual filters in the similar manner as in
(9).



The commonly used basic wavelet filters are short FIR filters with smooth
and slowly decaying frequency responses. This fact exhibits in a poor frequency
selectivity. Combined with the octave-only frequency division coming from the
dyadic structure, this makes the DWT seemingly not attractive from the audio
signal processing point of view. Nevertheless, the DWT was used in a number
of applications dealing with audio signals see e.g. the literature survey in [26].
Moreover, there is a body of wavelet filterbank-based transforms improving upon
the DWT properties which are described in the rest of this section.

Fast Wavelet Transform – Mallat’s algorithm (fwt, ifwt): The equations (9)
are in fact an enabling factor for the well-known Mallat’s algorithm (also known
as the fast wavelet transform). The algorithm comprises of an iterative appli-
cation of the involuted (time reversed and conjugated) elementary two-channel
filterbank followed by subsampling by a factor of two

dj+1 = (aj ∗ g1(.− l))↓2 , aj+1 =
(
aj ∗ h1(.− l)

)
↓2 , (11)

where ∗ is the convolution operation and a0 = f . The iterative application of
the elementary filterbank forms a tree-shaped filterbank, where just the low-pass
output is iterated. The signal reconstruction from the coefficients is then done
by applying a mirrored filterbank tree using the dual basic filters g̃1 and h̃1. An
example of the discrete wavelet representation of a test signal using J = 11 levels
is depicted in Fig. 3 on the left.

In addition, the routines are capable of working in a more general setting
allowing arbitrary number of filters followed by arbitrary subsampling factors
in the elementary filterbank as it is required by some generalized wavelet filters
constructions e.g.M -band wavelets [38], dual-density wavelets [35], framelets [14]
and others.

The toolbox contains an easily extendible collection of routines for generating
a number of wavelet filters families (see functions with the wfilt_ prefix).

Wavelet Filterbank Tree (wfbt, iwfbt): Wavelet filterbank trees generalize the
DWT filter tree by allowing further recursive decomposition of the high-pass
filter output and by allowing a direct definition of a basic filterbank in each of
the tree nodes. A flexible frequency covering can be achieved this way. It can
also be used to construct more involved wavelet tree filterbanks like the ones
used in dual-tree (M-band) complex wavelet transforms [7,36]. An example of a
depth 8 full tree decomposition is shown in Fig. 3 on the right.

Wavelet Packet Transform, Best Tree Selection (wpfbt, iwpfbt, wpbest): The
wavelet packet transform coefficients are formed by outputs of each of the node
in the wavelet filterbank tree. Such a representation is highly redundant but
leafs of any admissible subtree form a non-redundant representation – a basis,
assuming the basic wavelet filterbank in each node is critically subsampled. The
best subtree (basis) search algorithm relies on comparing a cost function as-
sociated witch each wavelet packet coefficient subband. Both additive [43] and
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Fig. 3. On the left, the amplitude of DWT of an excerpt of the gspi test signal using
J = 11 levels and the 16tap symlet basic wavelet filters (see help for wfilt sym)
is displayed. On the right, there is a representation obtained by a depth 8 full tree
decomposition. Both representations are non-redundant. The figures can be reproduced
by running demo wavelets.

non-additive [42] measures are incorporated in the wavelet module. The search
proceeds by pruning the full tree as follows: first, the depth J full wavelet packet
decomposition of a signal is performed. Then, the nodes are traversed in the
breadth-first order starting from the highest level. At each node, the input cost
and the combined output costs are compared. If the input cost is less than the
output cost, the current node and all possible descendant nodes are marked to be
deleted, if not, the input is assigned the combined output cost. After traversing
the whole tree, the marked nodes are removed and the resulting tree is consid-
ered to be the best tree (or near-best when using the non-additive cost functions)
with respect to the chosen cost function. An example of such a representation
is in Fig. 4 on the left. The right plot shows the depth of the node in the tree
for the current channel. The lower this number is, the broader is the frequency
band and the higher is the number of coefficients in the subband.
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Fig. 4. The best basis representation starting from a full depth-8 wavelet packet tree
using the Shannon entropy as the cost function. The figure can be reproduced by
running the example in the help section of the wpbest function.



There have been several attempts to use wavelet filterbank trees and wavelet
packets to process audio signals, mainly in the context of audio compression.
The authors of [25] used M-band wavelet filterbanks in order to divide the fre-
quency band into nonlinear frequency bands reminiscent of the tempered musi-
cal frequency scale or into an auditory frequency scale. See demo_wfbt from the
toolbox.

All wavelet-type transformations mentioned so far are also available in undec-
imated versions in the toolbox (undecimated is sometimes referred to as station-
ary in the literature). These representations are very redundant, shift-invariant
and the subbands are aliasing-free. The lack of aliasing makes the reconstruction
more robust against coefficient modifications. A fast À-trous algorithm [23] is
used when computing such transforms.

There are several boundary extension techniques available for wavelet based
filterbanks implemented in the toolbox. Apart from the default periodic exten-
sion, the toolbox supports two types of symmetric extension and extension with
zeros, which might lessen the effect of boundary conditions in some situations.
Since the wavelet filters are exclusively short FIR filters, the information about
the necessary samples beyond the boundaries can be stored in additional coeffi-
cients. The downside of this algorithmic approach is that the underlying frame
abstraction becomes unclear.

6 Generalized Fourier Transform

The Generalized Goertzel algorithm (gga): The traditional Goertzel algorithm
[19] (introduced in 1958) is a fast algorithm for evaluating individual samples of
the DFT of f ∈ CL i.e.

c(k) =

L−1∑
l=0

f(l)e−2πikl/L . (12)

The number of real floating point operations required by the Goertzel algo-
rithm is approximately three-quarters of the operations used in the direct evalu-
ation. The Goertzel algorithm also does not require explicit evaluation of all the
complex exponentials. A generalization of the Goertzel algorithm was presented
in [41]. It allows obtaining individual values at an arbitrary position on the unit
circle such that k in (12) does not have to be an integer, with no increase of the
computational complexity. The algorithm can be useful for detecting the pres-
ence of harmonic signals with frequencies not being multiples of the fundamental
frequency. An example in Fig. 5a shows regular DFT samples (solid lines) of a
test signal consisting of a sum of harmonic components and samples obtained
by the generalized Goertzel algorithm (bold dashed lines) selecting k to coincide
with the known frequencies.

The chirp Z transform (chirpzt): The toolbox also contains an implementation
of a similar purpose algorithm called the chirp Z transform [34], sometimes
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(b) Chirp Z transform example

Fig. 5. Frequency content of a test signal of length 1024 sampled at rate 8 kHz con-
sisting of the sum of five real harmonic components at 400, 510, 620, 680, 825 Hz with
amplitudes 5, 3, 4, 1, 2 respectively. The figures can be reproduced by the examples in
the help section of the gga and chirpzt functions respectively.

incorrectly called the fractional Fourier transform. The algorithm can be used for
fast evaluation of K equispaced samples on the unit circle (or more generally on
a spiral in the Z-domain) starting at an arbitrary (possibly non-integer) position
such that k = k0 + nkd in (12) for n ∈ {0, . . . ,K − 1} and k0, kd ∈ R. The
effective implementation of the algorithm is based on a fast convolution of the
signal with a chirp and some pre- and post-processing operations. The algorithm
can be used for “zooming” to a specific frequency range as is shown in Fig. 5b
where the bold solid lines represent the regular DFT samples and the dashed
ones are obtained by the chirp Z transform.

Fractional Fourier transform (dfracft,ffracft): The fractional Fourier trans-
form (FRFT) is a generalization of the classical Fourier transform and has re-
ceived considerable attention in the literature, the most complete survey to date
can be found in [28]. The FRFT of a function depends on the parameter α, for
α = 1 it coincides with the ordinary FT. We will denote the FRFT as Fα. The
parameter α (or more precisely απ/2) is also referred to as angle of the trans-
form, since Fαf can be regarded as a rotation of the signal f in the TF-plane
by the angle απ/2. The Fourier Transform is a special case and is a rotation by
π/2. For a survey paper on computational aspects of the FRFT we refer to [10],
we express our gratitude towards the authors of this paper for allowing us to
integrate their code.

Currently there are two different methods available in LTFAT to compute the
FRFT for a given angle. The first one is based on the computation of a discrete
set of Hermite functions by diagonalizing a discretized version of the Hamiltonian
operator (dfracft). The (quantum mechanical) Hamiltonian operator is the sum
of the squares of the position and the momentum operators. The square of the
continuous momentum operator D2 = d2/dt2 can be approximated by the second
difference operator D̃2 acting on CL. The square of the momentum operator



can consequently be approximated by D̃2 on the Fourier side. This leads to an
eigenvalue problem of size L × L for the computation of the discrete Hermite
functions, the detailed construction can be found in [11]. Basing the computation
of the FRFT on this set of discrete Hermite functions, the transform has all the
desirable properties, such as unitarity and index additivity (FαFβ = Fα+β).

The continuous FRFT can be written in several different ways, one of them
is through composition of a chirp multiplication followed by a chirp convolu-
tion and another chirp multiplication. The integrals can be approximated using
quadrature formulas, which leads to a finite dimensional computational proce-
dure (ffracft) with complexity L logL, which is faster than the FRFT based on
diagonalization of an L×L matrix. However, this approximation of the integrals
has the disadvantage of being neither precisely unitary, nor does it satisfy the
index additivity exactly.
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Fig. 6. DGT spectrograms of the greasy test signal before (left) and after (right)
applying the fractional Fourier transform with α = 0.3 using the ffracft function.

7 Examples

7.1 Applying a Frame multiplier

Frame multipliers are useful for separating, deleting and selective enhancement
of objects in the time-frequency plane and for approximating responses of linear
time-varying systems. Fig. 7a shows a spectrogram of a result of applying a frame
multiplier using a tight Gabor frame (a = 200, M = 1000, 20 ms Hann window)
with the symbol depicted in Fig. 7b. The symbol approximates a band-pass filter
with varying center frequency over time.

7.2 Enforcing Sparsity

Different signal characteristics like transients or the harmonic structure can be
made more prominent by applying transforms with appropriate time-frequency
resolutions combined with a procedure which enforces the representation to be
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(a) Spectrogram after re-synthesis
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(b) The symbol

Fig. 7. Simulating an audio effect using a frame multiplier applied to the gspi test
signal. The figures can be reproduced by running demo bpframemul.

group sparse in time or frequency. Fig. 8a shows the transient part and Fig. 8b
the tonal part of an excerpt of the gspi test signal. The tonal part is obtained
using higher number of frequency channels and forcing the representation to be
sparse in frequency and vice versa the transient part.
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(b) Tonal part

Fig. 8. Separation of the transient and the tonal components using group sparsity. The
figures can be reproduced by running demo audioshrink.

7.3 Reconstruction from Magnitude Only

Fig. 9a depicts the original DGT spectrogram (magnitude of the coefficients) of
an excerpt of the gspi test signal, whereas Fig. 9b is a visualization of the phase
difference between the original phase and the phase reconstructed iteratively
using the Griffin-Lim algorithm. The difference is zeroed for coefficients smaller
than −50 dB. Clearly some regions of the phase in the spectrogram were recon-



structed with a constant phase shift, other exhibit a periodically reoccurring
patterns in the phase difference.
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(a) Original spectrogram
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(b) Phase difference

Fig. 9. Reconstructing a signal from the magnitude of the coefficients only. The figures
can be reproduced by running demo phaseret.

The reconstruction from the magnitude of the coefficients can be also used for
synthetic spectrograms. Fig. 10 shows an example of creating an audible sound
from an image. The DGT (real) time-frequency grid was used with a = 8 and
M = 800. The iterative algorithm gives a more pleasant sound than the mere
direct reconstruction with phase set to zero.

Time (samples)

F
re

q
u
e
n
c
y
 (

n
o
rm

a
liz

e
d
)

 

 

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(a) Original spectrogram (linear scale)

Time (samples)

F
re

q
u

e
n
c
y
 (

n
o
rm

a
liz

e
d
)

 

 

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

−50

−40

−30

−20

−10

0

(b) Spectrogram of the signal with a new
phase.

Fig. 10. The figures can be reproduced by running demo frsynabs.



8 Block-stream Processing Framework

Audio processing experiments become much more impressive when it is allowed
to change parameters during the playback or when the data are obtained di-
rectly from a microphone, processed and immediately played. In such cases, it
is necessary to process small chunks of data to keep the processing delay low.
LTFAT provides a simple and unified framework for producing such streams of
blocks in order to achieve the real-time data stream capture and the playback
directly from the Matlab/Octave without a need for any additional toolbox or
low-level programming.

The programming flow consists of setting up the block stream parameters
like the data source, audio device, input/output channels etc. using the block

function and creating the control window object blockpanel prior to entering
the processing loop. The loop condition checks the value of a state variable, which
is unset when the control panel is closed by the user or the Ctrl-C keyborad
shortcut is pressed. The loop condition can be altered to check the end of the
stream if expected e.g. when using an audio file or a data vector as the source. In
each iteration, a new data block is obtained by the blockread function and it is
enqueued to be played by blockplay. The minimal working example is displayed
in Fig. 11.

block('playrec');

p = blockpanel({'GdB','Gain',-20,20,0,21});

while p.flag

gain = blockpanelget(p,'GdB');

f = blockread();

blockplay(f*10^(gain/20));

end

blockdone(p);

Fig. 11. A minimal block-stream processing example: take input from a microphone
and route it trough the loop to the speakers allowing setting gain in the range from
−20 to 20 dB during playback using the slider in the panel (on the right).

The real-time processing capabilities of Matlab/Octave are quite limited
when compared to the professional low-level solutions, therefore we cannot rec-
ommend using the block-processing framework in settings where glitch-less play-
back is required. Nevertheless, the block-stream framework allows quick proto-
typing of algorithms in a real-time setting with a minimal programming effort.

8.1 Transform Domain Processing

The block-stream processing framework was designed to be used in conjunction
with the frames framework introduced in Sec. 2 in order to provide means for



a real-time time-frequency analysis, visualization, modification and synthesis.
There are two obstacles when considering applying transforms from the toolbox
on a real-time stream of data blocks:

1. The computational complexity of the desired operation.
2. The processed signal periodicity assumption.

The fast execution is achieved by pre-computing all the fixed data by means
of the blockframeaccel or blockframepairacel functions prior entering the
processing loop complemented with an efficient C implementation of algorithms.
The periodicity assumption goes against the way how data are actually obtained
in a real-time setting. Therefore the direct naive application of the transform to
individual blocks will produce “bad” coefficients not fit to be directly manipu-
lated or plotted even though the block can be reconstructed perfectly. LTFAT
supports two approaches for adapting the transforms to avoid or at least lessen
the impact of the assumed periodicity: the combined overlap-save/overlap-add
approach for transforms using FIR windows/filters and the slicing window ap-
proach for all other transforms.

a) The combined overlap-save/overlap-add approach is conceptually similar to
the one in [33], where it was used for developing an algorithm for an error-free
block-wise discrete wavelet transform. The algorithm is based on a principle of
overlap-save (also known as the overlap-discard) type block convolution for the
analysis and overlap-add type block convolution for the synthesis. The necessary
overlap lengths can be determined exactly from the finite windows/filter lengths
the transform is based on.

The algorithm as described here holds for the following assumptions:

1. The window hop size a (or the subsampling factor) is uniform for all windows.
2. The window length is Lw = k2a + 1 for k being some positive integer and

the origin is at the middle sample.
3. The blocks have uniform lengths Lb = la for l being some positive integer.
4. Lb > Lw.

These assumptions are often too restrictive in practice, but more general settings
require rather large number of additional operations the description of would
obscure the principal idea of the algorithm. The current implementation requires
the first assumption and uniform length (though arbitrary) FIR windows having
the same position of the origin. Moreover, the implementation is able to handle
blocks with varying lengths.

Analysis part:

1. Read a block of data, extend it from the left side by the Lw− 1 last samples
form the previous block.

2. Apply the transform to the extended block.
3. From the resulting coefficients, keep only those at indexes {k, . . . , l + k − 1}

starting counting from zero.



The last step discards coefficients which are time-aliased due to the implicit
periodic boundary handling. The discarding is done from the both sides because
the windows used in the LTFAT computation routines are not causal. The re-
maining coefficients are equal to the corresponding coefficients from a transform
of a signal without dividing it into blocks. The cropped coefficients, possibly
modified, form the input for the synthesis part of the algorithm.

Synthesis part:

1. Create zero arrays of length 2k+ l for each channel and copy the coefficients
obtained by the analysis procedure to time positions {k, . . . , l + k − 1}.

2. Apply the inverse transformation to the extended coefficients.
3. Recall the Lw− 1 last samples from the previous block and add them to the

first Lw − 1 samples of the current block.
4. Store the last Lw − 1 samples as the overlap used in the next block.

A toy example of applying the algorithm is depicted in Fig. 12 and Fig. 13
for the analysis and synthesis parts respectively.

f

c

c0

c1

c2

f0

f1

f2

zeros

0 9 18

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Fig. 12. An example of the analysis part of the combined overlap-save/overlap-add
algorithm for a = 3, Lb = 9 and Lw = 7 (l = 3, k = 1). The figure shows the first three
blocks of the signal f and the true time positions of coefficients c. Each of the blocks f0,
f1 and f2 is extended from the left side by Lw − 1 = 6 samples and transformed. The
respective coefficients c0, c1, c2 are obtained and only the ones with indexes {1, 2, 3}
are retained. Note the algorithm produces k additional coefficients at the beginning
when compared to the true coefficients c.

b) The Slicing window method was originally presented in [22]. In contrast to
the previous approach, the slicing window method does not try to determine
overlaps exactly, but instead employs a slicing window to weigh blocks of samples
producing slices. After windowing, the slice is optionally symmetrically zero-
padded to lessen the effect of the time aliasing. After reconstruction, the slice
is weighted by a dual slicing window and the reconstructed signal assembled in
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Fig. 13. An example of the synthesis part of the combined overlap-save/overlap-add
algorithm. The coefficients c0,c1 and c2 are extended with zeros and the reconstructed
blocks f0,f1 and f2 are overlapped. Note the overall delay of the algorithm is Lw−1 = 6
samples.

an overlap-add manner. The same slicing window can be used for dividing the
signal and for the assembly, if the squares of all it’s time shifts form a partition
of unity. More general combinations of windows are also possible, see [22] for
the details. Note that the coefficients reflect the shape of the slicing window, so
non-linear processing like thresholding applied directly to the coefficients may
introduce blocking artifacts. In the toolbox, the method is implemented in such
a way the slicing window is applied to a concatenation of the previous and the
current block so the slicing window shift is Lb effectively. By default, a square-
root of a peak-normalized Hann window is used but the programming interface
allows specifying customized slicing windows.

In the toolbox, the demos with the demo blockproc prefix show the block-
stream processing framework in action. Fig. 14 is a screenshot of one of the demos
doing a real-time visualization of the discrete Gabor transform spectrogram of
the gspi test signal played in the loop. The coefficients are obtained using a FIR
window and the analysis part of the combined overlap-save/overlap-add method.
Another demo plots a real-time CQT spectrogram. The same test signal is used
in the screenshot in Fig. 15. The coefficients are obtained by the slicing window
method.

9 Design and Implementation

The toolbox is designed in such a way that the functions forming the program-
ming interface in most cases only check and format the user defined inputs and
pass them further to the routines with the comp prefix, that perform the actual
computations. The majority of the comp functions can be replaced (shadowed)
by compiling the MEX/OCT files with the identical name to speedup the com-
putations. The MEX/OCT files themselves do not contain the computations,
but again just format the inputs (unify data types, change complex numbers



Fig. 14. Real-time DGT spectrogram of the (looped) gspi test signal (262144 samples,
sampling frequency 44.1 kHz) using Lb = 1024, a = 100, M = 3000 and 20 ms Hann
window. For the visualization purposes, absolute values of coefficients are limited to the
range −70 dB. . . 20 dB which is linearly mapped to the inverted grayscale colormap.

Fig. 15. Real-time CQT spectrogram of the gspi test signal. Only frequencies in the
range 200 Hz. . . 20 kHz are displayed using 48 bins per octave (320 bands), Lb = 1024,
slicing window length 2Lb and additional Lb zeros of a symmetric zero padding. For
visualization purposes, coefficients from consecutive blocks were overlapped to better
approximate the true coefficients.



memory layout) and obtain data pointers and call the actual computational
routine(s) from the separately compiled backend C library to which they link
to. The backend library depends on the FFTW library and on the BLAS and
LAPACK libraries, which are usually already contained in the Matlab/Octave
installation. On Windows systems, a manual installation of the FFTW library
is necessary at the moment when using Matlab. In order to minimize the code
repetition, the backend library is built in such a way the actual code is indepen-
dent of the desired data type (floating data types with different precision) and
even of the real or the complex data type where possible.

The regular toolbox functionality can be used without the backend library
and MEX/OCT interfaces. The block-stream processing framework however
requires compiling the MEX interface playrec (http://www.playrec.co.uk,
contained in LTFAT), which depends on the Portaudio library (http://www.
portaudio.com), which is again distributed with recent versions of Matlab. The
compilation process is automated via the ltfatmex command, but pre-built
packages can be downloaded from the toolbox webpage. An additional possibil-
ity for Octave users is installing LTFAT directly trough the integrated package
management system pkg, which takes care of compiling everything during the
installation process.

10 Outlook

This section describes possible enhancements and features of the toolbox which
might be included in the future versions.

Quadratic time-frequency distributions – Although the family of quadratic time-
frequency distributions cannot be associated with frames because of their non-
linear character, they offer yet another way of studying audio signal features [12].
Moreover, algorithms for synthesizing signals from their quadratic representa-
tions exist, so there is a possibility for doing modifications on the coefficients in
a similar manner as with frame multipliers.

Modern algorithms for phase-less reconstruction – A reconstruction from only
the magnitude of frame coefficients is currently a very active topic in research. We
plan to implement some of the modern algorithms, see e.g. [15], to complement
the Griffin-Lim algorithm.

Gabor dual windows using convex optimization – Explicit formulas for Gabor
dual windows are known only for the canonical dual frame. If the frame system
is redundant, infinitely many dual windows exists. Using results from [30,31] we
will add an option to search for the optimal dual window given a prior criterion.

Algorithms for computation of optimal dual uniform FIR filterbank frames –
The current algorithm for computing dual uniform FIR filterbank (based on [9])
frames in LTFAT suffers from two drawbacks. First, it is capable of computing



the canonical dual frame only and it does not preserve the FIR property. The
plan is to include results from [18] to allow more freedom in choosing the optimal
FIR filterbank dual frames.
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21. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser (2001)
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33. Pr̊uša, Z.: Segmentwise Discrete Wavelet Transform. Ph.D. thesis, Brno University
of Technology, Brno (2012)

34. Rabiner, L., Schafer, R., Rader, C.: The chirp Z-transform algorithm. Audio and
Electroacoustics, IEEE Transactions on 17(2), 86–92 (1969)

35. Selesnick, I.W.: The double density DWT. In: Wavelets in Signal and Image Anal-
ysis, pp. 39–66. Springer (2001)

36. Selesnick, I.W.: The double-density dual-tree DWT. Signal Processing, IEEE
Transactions on 52(5), 1304–1314 (2004)

37. Søndergaard, P.L., Torrésani, B., Balazs, P.: The Linear Time Frequency Analysis
Toolbox. International Journal of Wavelets, Multiresolution Analysis and Informa-
tion Processing 10(4) (2012)

38. Steffen, P., Heller, P., Gopinath, R., Burrus, C.: Theory of regular M-band wavelet
bases. Signal Processing, IEEE Transactions on 41(12), 3497–3511 (Dec 1993)

39. Stoeva, D.T., Balazs, P.: Invertibility of multipliers. Applied and Computational
Harmonic Analysis 33(2), 292–299 (2012)

40. Stoeva, D.T., Balazs, P.: Canonical forms of unconditionally convergent multipliers.
Journal of Mathematical Analysis and Applications 399, 252–259 (2013)

41. Sysel, P., Rajmic, P.: Goertzel algorithm generalized to non-integer multiples
of fundamental frequency. EURASIP Journal on Advances in Signal Processing
2012(1), 56 (2012)

42. Taswell, C.: Near-best basis selection algorithms with non-additive information
cost functions. In: Proceedings of the IEEE International Symposium on Time-
Frequency and Time-Scale Analysis. pp. 13–16. IEEE Press (1994)

43. Wickerhauser, M.V.: Lectures on wavelet packet algorithms. In: Lecture notes,
INRIA (1992)

44. Wiesmeyr, C., Holighaus, N., Søndergaard, P.L.: Efficient algorithms for discrete
Gabor transforms on a nonseparable lattice. IEEE Trans. Signal Process. 61(20)
(2013)


