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The Linear Time Frequency Analysis Toolbox is a Matlab/Octave toolbox for computa-
tional time-frequency analysis. It is intended both as an educational and computational
tool. The toolbox provides the basic Gabor, Wilson and MDCT transform along with
routines for constructing windows (�lter prototypes) and routines for manipulating co-
e�cients. It also provides a bunch of demo scripts devoted either to demonstrating the
main functions of the toolbox, or to exemplify their use in speci�c signal processing ap-
plications. In this paper we describe the used algorithms, their mathematical background
as well as some signal processing applications.

1. Introduction

Time-frequency analysis stands as one of the major recent developments in the

�eld of mathematical signal processing. Besides the very natural (and old) idea

of providing a localised version of the Fourier transformation that led long ago to

the development of the short time Fourier transform (STFT), the theory of Gabor

transforms and generalisations has emerged as a new scienti�c domain that has

found applications in many di�erent areas.

Fourier analysis (see for example the �rst chapter of Ref. 29 for a review) provides

expansions for signals as linear combinations of sines and cosines. In the continuous

time setting, one writes

x(t) =

∫ ∞
−∞

x̂(ν)e2iπνt dν ,

where i is the imaginary unit (i2 = −1), t is the time variable, ν is the frequency
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variable, and the Fourier transform x̂ of the signal x reads

x̂(ν) =

∫ ∞
−∞

x(t)e−2iπνt dt .

Similar expansions may be written in the in�nite and �nite discrete time settings

(see below for more details), as well as higher dimensional situations.

The short time Fourier transform of a signal is essentially a family of Fourier

transforms of localised versions of the signal, obtained by multiplying it with shifted

copies of a window function. Even though the STFT is a commonly used tool in

signal analysis14,26, it has several shortcomings in a number of applications. Among

these, one may mention the fact that the STFT generally represents a vastly over-

complete representation for signals, which is often not suitable (for example for

signal coding, or simply in terms of computational load or memory requirements).

Another consequence of overcompleteness is the non-uniqueness of the signal expan-

sion as linear combination of localised sine waves; this may be seen as a richness for

the STFT, but also introduces extra di�culties (which expansion should be used?).

Gabor analysis encompasses short time Fourier analysis by introducing a suit-

able mathematical framework within which the role of the window, as well as the

sampling of the time-frequency domain are controlled. Gabor analysis provides ex-

pansions for signals as (discrete) linear combinations of Gabor atoms gmn, de�ned as

shifted and modulated copies of a reference window γ, termed the synthesis window,

as

γmn(t) = e2iπmbtγ(t− na) , (1.1)

with t a (discrete or continuous) time variable, and a, b > 0 two time and frequency

sampling constants. Gabor analysis then provides expansions of the type

x =
∑
m,n

c(m,n)γmn (1.2)

and algorithms for the computation of the (generally non-unique) set of coe�cients

c(m,n) of the expansion, provided that the window γ and the constants a, b have

been suitably chosen.

In a dual point of view, Gabor analysis may also be formulated in terms of the

Gabor transform, which associates with a signal x the family of its inner products

c(m,n) = 〈x, gmn〉 (1.3)

with Gabor atoms gmn, constructed from a single analysis window g. In this lan-

guage, Gabor analysis allows for the inversion of the Gabor transform, i.e. to express

the signal x in terms of the coe�cients c(m,n), again provided that the window g

and the constants a, b have been suitably chosen. The inversion formula then as-

sumes the form (1.2), for some synthesis window γ. Note that Equation (1.2) is

in general again non-unique in the sense that di�erent synthesis windows could be

used.
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In both situations, the Gabor coe�cients c(m,n) may be used for various pur-

poses: they can be analysed to provide information on the signal. They can also

be modi�ed, which induces a transformation on the signal. Besides analysis and

synthesis, signal transformations via coe�cients modi�cations represent the third

main aspect of Gabor analysis. The simplest way of modifying Gabor coe�cients is

to multiply them pointwise with a given mask, or time-frequency transfer function.

The time-frequency transfer function takes the form of a doubly labeled sequence

m(m,n), and generates the transformation

Mmx =
∑
m,n

m(m,n)c(m,n)γm,n . (1.4)

It may be shown that the transformation Mm, termed a Gabor multiplier3,22, is a

linear operator. By analogy with the classical linear �lters commonly used in signal

processing, which are de�ned as multiplications with a transfer function in the

Fourier domain, Gabor multipliers stand as non-stationary, or time-varying linear

�lters.

It was proved (see Ref. 29 for a review) that classical Gabor analysis may also

su�er from some drawbacks, which motivated several authors to propose modi�ed

or generalised versions of Gabor analysis. One of these drawbacks is the impos-

sibility of �nding smooth windows g and sampling constants a, b such that the

corresponding family of Gabor atoms would generate an orthonormal basis of the

space of signals (the reader not familiar with the elements of linear algebra relevant

for signal processing may want to consult the �rst chapter of Ref. 56 for an out-

line). Mainly two constructions were proposed for time-frequency like orthonormal

bases: Wilson bases, and MDCT (modi�ed discrete cosine transform) bases. Both

are based upon a subtle modi�cation of the construction rule of Gabor functions,

which overcome the obstruction that prevents Gabor atoms from forming orthonor-

mal bases. MDCT bases have become extremely popular in practical applications,

as they are commonly used in audio coders such as the standards mp3, ogg vorbis

and mpeg4 aac see Ref. 60 and references therein).

Such linear time-frequency decomposition methods actually o�er a wide vari-

ety of expansion methods, which are adapted to various situations. In the signal

processing domain, redundant representations (for example Gabor expansions with

small values of the product ab) are generally preferred for signal analysis purposes,

as they often allow the user to �read� relevant information from the transform, and

proceed to further tasks such as detection, parameter estimation, and others. Fur-

thermore, redundant representations turn out to be extremely useful for building

time-varying signal �lters, as mentioned above. On the contrary, applications such

as signal coding and compression prefer to avoid redundancy, and Gabor systems

with low redundancy and Wilson or MDCT bases are then preferred. This is also

the case for signal denoising, even though very little is known regarding denoising

in redundant systems.
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The LTFAT toolbox features a number of linear time-frequency transformation

tools, pure frequency transforms, and some signal processing tools including exam-

ples and test signals.

This toolbox started as the PhD project49 of the �rst author. It is planned as

an open-source, well-documented and extensive linear time-frequency toolbox for

MATLAB/Octave freely available on the net. This paper could serve as a general

literature citation when LTFAT is used for academic purposes.

As we deal with algorithms, all signals and matrices are �nite-dimensional and

periodic. We regard vectors (e.g., discrete signals) x = (x0, x1, . . . , xn−1) ∈ CL
as periodic functions on Z (with period L), so xi+k·L = xi for all i, k ∈ Z. On
this vector space we have a (Euclidean) norm ‖x‖ which is induced by the scalar

product 〈x, y〉 =
L−1∑
i=0

xiyi. Every linear operator A : CL → CM can be identi�ed

with a matrix vector multiplication A(x) = A · x =

(
L−1∑
j=0

ai,jxj

)
i=0..M−1

, where

A = (ai,j)M,L is an M × L matrix. Note that all signals, windows and transforms

are considered periodic, as this gives the fastest algorithms and the simplest math-

ematics, at the expense of the sometimes unnatural periodic boundary condition.

Section 2 introduces the basic tools from discrete Fourier analysis and discrete

time/frequency analysis. These methods are mostly intended for teaching and gen-

eral exploration of the �eld.

Section 3 introduces the three time/frequency transforms: The Gabor transform,

the Wilson transform and the MDCT. These are the main computational methods

in the toolbox.

Section 4 introduces a collection of tools that can be used for the construction

of windows (�lter prototypes) for the transforms.

Section 5 introduces a collection of signal processing tools and examples that

complements the time-frequency methods. These tools and examples demonstrate

how time-frequency analysis is useful for a range of signal processing tasks.

Section 6 discusses the algorithms and implementation of the toolbox.

We will link the mathematical background to the algorithms in LTFAT. We will

denote the name of a MATLAB function in typewriter style (functioname).

2. Basic Fourier Analysis

The toolbox contains some basic Fourier analysis tools intended mostly for teaching.

This includes dft, a unitary discrete Fourier transform (DFT), its inverse idft,

periodic convolution pconv and involution involute.

The DFT c ∈ CL of a signal f ∈ CL is given by

c (k) =
1√
L

L−1∑
l=0

f(l)e−2πikl/L, k = 0, . . . , L− 1. (2.1)
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The inverse transform reads

f(l) =
1√
L

L−1∑
k=0

c(k)e2πikl/L, l = 0, . . . , L− 1. (2.2)

The invertibility of the DFT originates from the fact that the family of vectors

εk ∈ CL de�ned by their components

εkl =
1√
L
e2πikl/L , l = 0 . . . L− 1 (2.3)

form an orthonormal basis of CL.
The standard DFT implementation fft that is included in Matlab and Octave

is normalised di�erently. The periodic convolution h ∈ CL of two signals f, g ∈ CL
is given by

h (l) =

L−1∑
k=0

f(k)g(l − k), l = 0, . . . , L− 1. (2.4)

In addition to the Discrete Fourier transform, the toolbox also contains the

classical discrete cosine and sine transforms type I-IV (dcti, dctii, dctiii and

dctiv, and corresponding dst functions, see Ref. 48 for a review). These transforms

are real valued (real valued input gives real valued output) as opposed to the DFT,

and they are therefore sometimes better suited for practical applications on real

valued signals. In particular, the DCT is the mathematical transform used in JPEG

image compression. For an overview of the statistics of DCT coe�cients for natural

images, see Ref. 42.

The toolbox contains a list of functions with special behaviour in time and

frequency: A periodic chirp pchirp that grows linearly in frequency, two families

of Hermite functions which are invariant with respect to the DFT, various window

functions to be described below and the Shah distribution shah (also known as a

pulse train).

Remark: The FFT for real signals It is well known that the Fourier trans-

form of a real-valued vector possesses the Hermitean symmetry: if f ∈ RL, then
f̂(L−1−n) = f̂(n) for all n = 0, . . . L−1. Therefore, the computation of half of the

values of the Fourier transform is not necessary, which results in interesting savings

in terms of memory and computing time. The toolbox includes a version of FFT

adapted to real-valued vectors, which only returns the useful values of the Fourier

transform (i.e.the �rst half, which actually corresponds to positive frequencies, due

to the periodicity of the DFT). The corresponding function is termed fftreal,

and the inverse FFT for real-valued vectors (i.e. using only positive frequencies) is

ifftreal.

3. Time/Frequency transforms

The prototype of time-frequency transform is the Short Time Fourier Transform

(STFT). The STFT of a signal f ∈ CL is obtained by Fourier transforming copies of
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f that are localised by pointwise multiplication with a sliding window l→ g(l−n),
i.e. by computing

STFT(m,n) =

L−1∑
l=0

f(l)g(l − n)e−2iπml/L , m, n = 0, . . . L , (3.1)

the bar denoting complex conjugation, and being purely conventional here (for

coherence with the next sections). The simplest choice for the window g, namely a

rectangular window, turns out to be quite inappropriate in practice because of its

poor spectral localisation, and smoother window functions are generally preferred.

The STFT is invertible: a direct calculation yields

f(l) =
1

‖g‖2
L−1∑
m,n=0

STFT(m,n)g(l − n)e2iπml/L , (3.2)

where ‖g‖ is the Euclidean norm of the vector g. However, it is worth mentioning

that the STFT of a signal represents highly redundant information, since a signal

f ∈ CL is represented by L2 coe�cients STFT(m,n). Such a redundancy may

be useful in a number of applications. However, for large L, the large size of full

STFT is often not suitable. One has to subsample the STFT, which leads to Gabor

transforms. We describe below the Gabor transform, together with two variants,

which have the advantage of yielding orthonormal time-frequency bases, which is

impossible if one limits to Gabor. The corresponding transforms are generated from

windows, which we also comment on in the corresponding sections. In particular,

the windows have to possess some symmetry properties to generate MDCT and

Wilson bases.

The STFT is a particular case of the Gabor transform, see next section, and can

be calculated in LTFAT by dgt.

3.1. The discrete Gabor transform

The STFT inversion formula (3.2) may be interpreted as an expansion of the signal

f with respect to a (redundant) system of elementary waveforms

l −→ g(l − n)e2iπml/L , m, n = 0, . . . L− 1.

Subsampling this redundant system leads to the so-called Gabor systems, also called

Weyl-Heisenberg systems, or Fourier modulated �lter banks12:

l −→ g(l − an)e2iπml/M , m = 0, . . .M − 1, n = 0, . . . N − 1. (3.3)

The following parameters describe the size of a discrete Gabor transform:

a : Time separation.

M : Number of frequency bands.

L : Length of signal.
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This implicitly assumes that L =Mb = Na, which in practice can be accomplished

by truncating the signal to the appropriate length, or adding zeroes to the signala.

With these parameters, the coe�cients c ∈ CM×N computed by the discrete Gabor

transform of the signal f are given by:

c (m,n) =

L−1∑
l=0

f(k)e−2πiml/Mg (l − an). (3.4)

These coe�cients are samples of the discrete short-time Fourier transform of the

signal. They are complex, even if both window and input signal are real.

Please note that sometimes the terms STFT or Short Time Spectrum are used

for both the (full) STFT and the Gabor transform, see e.g. Ref. 1.

Regarding inversion from a discrete Gabor transform, it is convenient to intro-

duce the following notion.

De�nition 1. A family of vectors ej , j = 0, ..., J − 1 of length L is called a frame

if constants 0 < A ≤ B exist such that

A ‖f‖2 ≤
J−1∑
j=0

|〈f, ej〉|2 ≤ B ‖f‖2 , ∀f ∈ CL. (3.5)

The constants A and B are called lower and upper frame bounds. If A = B, the

frame is called tight. If J > L, the frame is redundant (oversampled).

The redundancy of the frame is the fraction J
L . Finite- and in�nite dimensional

frames are described in Ref. 16.

In the �nite dimensional setting we are concerned with, a frame is essentially a

family of vectors which is complete in the considered signal space. The right hand

side inequality is always ful�lled for a �nite set of vectors, however the introduction

of frame bounds is still useful, since it allows control of the convergence rate of

the inversion algorithm. A frame may be a basis, but interesting frames are often

redundant.

A nice and useful feature of frames is the existence of (generally in�nitely many)

dual frame(s), from which signal expansions may be obtained. More precisely, given

a frame {ej , j = 0, ..., J − 1}, there exists a family {ẽj , j = 0, ..., J − 1} such that

for all f ∈ CL,

f =

J−1∑
j=0

〈f, ej〉ẽj =
J−1∑
j=0

〈f, ẽj〉ej .

Among the dual frames, the so-called canonical dual frame has a speci�c status,

e.g. it gives minimal norm coe�cients16. The canonical dual frame is constructed

as follows.

aSuch options are implemented in the toolbox.
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Consider the linear transformation S : CL → CL, called the frame operator,

de�ned by

(Sf)(l) =

J−1∑
j=0

〈f, ej〉ej(l) , l = 0, . . . L− 1 . (3.6)

It can be shown that S is invertible. The canonical dual frame is then de�ned by

ẽoj = S−1ej , j = 0, . . . J − 1 . (3.7)

In the particular case of Gabor frames, the canonical dual frame of a Gabor

frame is still a Gabor frame, and is therefore generated using the canonical dual

window

gd = S−1g . (3.8)

Another window of special importance is the canonical tight window

gt = S−1/2g. (3.9)

This window generates a tight Gabor frame and gives perfect reconstruction if it is

used for both analysis and synthesis, much like in the situation of an orthonormal

basis. Given an analysis window g, and lattice constants a and b that generate a

Gabor frame, a vector h is an admissible dual window if for all f ∈ CL,

f =

M−1∑
m=0

N−1∑
n=0

〈f, gmn〉hmn . (3.10)

To obtain perfect reconstruction with well-behaved windows, it is necessary that

the Gabor system be redundant, so the Gabor system is a frame, and not a basis. A

Gabor frame is redundant if a < M . For detailed information about Gabor systems,

see the books 29, 23, 24.

The discrete Gabor transform is implemented in the function dgt. Besides the

signal and the parameter choices, dgt takes as one of its arguments the window.

See below for more details on window generation. The inverse Gabor transform is

implemented in idgt.

Remark: the DGT for real signals Like the FFT, the discrete Gabor trans-

form of real valued vectors possesses the Hermitean symmetry, if the window is itself

real-valued,

c(M − 1−m,n) = c(m,n) , n = 0, . . . N − 1, m = 0, . . .M − 1

so that again only half of the DGT coe�cients are necessary to characterise the

whole family. The toolbox implements the function dgtreal (resp. idgtreal) that

account for that particular symmetry, and return (resp. take as input variable) only

the relevant half of coe�cients.
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3.2. The discrete Wilson transform

Wilson bases were proposed as substitutes for Gabor frames, because of the im-

possibility of constructing Gabor systems that would be simultaneously generated

using well-behaved windows, and bases of the considered signal spaces.

A Wilson basis is formed by taking linear combinations of appropriate basis

functions from a Gabor frame with redundancy 2, see Ref. 11. Essentially Gabor

atoms of positive and negative frequencies are combined, with suitable �ne tun-

ing of their phases. This remarkable construction turns a tight Gabor frame into

an real, orthonormal basis, or turns a non-tight Gabor frame into a Riesz basis

(corresponding to a bi-orthogonal �lter bank). In Ref. 36 this system is described

as a �linear phase cosine modulated maximally decimated �lter bank with perfect

reconstruction�. Is is currently an open question whether there exist Wilson bases

obtained from a Gabor frame with another redundancy than 2. A partial answer

has been given in Ref. 62.

The coe�cients w ∈ C2M× L
2M computed by the Discrete Wilson Transform,

dwilt, of the signal f ∈ CL are given by

If m = 0:

w (0, n) =

L−1∑
l=0

f(l)g (l − 2na) . (3.11)

If m is odd and less than M :

w (m,n) =
√
2

L−1∑
l=0

f(l) sin(π
m

M
l)g(l − 2na), (3.12)

w (m+M,n) =
√
2

L−1∑
l=0

f(l) cos(π
m

M
l)g (l − (2n+ 1) a) . (3.13)

If m is even and less than M :

w (m,n) =
√
2

L−1∑
l=0

f(l) cos(π
m

M
l)g(l − 2na), (3.14)

w (m+M,n) =
√
2

L−1∑
l=0

f(l) sin(π
m

M
l)g (l − (2n+ 1) a) . (3.15)

If m =M and M is even:

w (M,n) =

L−1∑
l=0

f(l)(−1)lg(l − 2na) (3.16)

else if m =M and M is odd:

w (M,n) =

L−1∑
k=0

f(l)(−1)lg (l − (2n+ 1) a) . (3.17)
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Some notes on this: w(0, n) and w(M,n) only have half the bandwidth of the other

�lters, as cosine and sine include two complex frequencies, one positive and one

negative. This implies that an M -channel Wilson �lter bank will split a signal into

M +1 frequency bands, with the highest and lowest frequency band having half the

bandwidth.

If a Wilson basis is considered as an 2M -channel �lter bank, then roughly half

of the �lters (M − 1 if M is even, otherwise M +1) are time-shifted by M samples.

The Wilson transform is implemented in the function dwilt. Besides the signal

and the parameter choices, dwilt takes as one of its arguments the window, which

has to be whole point even (see below for more details on window generation). The

inverse Wilson transform is implemented in idwilt.

3.3. The modi�ed discrete cosine transform (MDCT)

The MDCT (modi�ed discrete cosine transform) is another substitute for the non-

existent well localised Gabor bases that has become extremely popular recently

for its numerous applications, in audio coding for instance39,45,46. The main idea

is again to provide a local version for trigonometric bases, using smooth windows

rather than rectangular ones.

The coe�cients c ∈ CM×N computed by the MDCT of f ∈ CL are given by:

For m+ n even:

w (m,n) =
√
2

L−1∑
l=0

f(l) cos

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na). (3.18)

For m+ n odd:

w (m,n) =
√
2

L−1∑
l=0

f(l) sin

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na). (3.19)

Notice that this de�nition of the MDCT is not the most common one: the common

de�nition of the MDCT require the window to have the HPE symmetry (see Sec. 4),

whereas this de�nition uses WPE windows just as the Gabor andWilson transforms.

The LTFAT form of MDCT transform is implemented in the function wmdct.

The inverse transform is implemented in iwmdct.

4. Window design

The toolbox can use both FIR (�nite impulse response) and IIR (in�nite impulse

response) windows. In this �nite setting, the meaning of IIR and FIR is the following:

FIR windows are shorter than the signal to be analysed, while IIR windows will

have the same length.

The intent of the toolbox is to stay close to the underlying mathematics, and

we have therefore adopted a di�erent layout of windows than what it usually done
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Figure 4.1. The �gure to the left shows the output of the Matlab command gausswin(120) while
the �gure to the right show the output of the LTFAT command pgauss(120).

in Matlab/Octave. This di�erence is visible in Figure 4.1, which shows a Gaus-

sian window computed by the Matlab/Octave gausswin and the LTFAT command

pgauss. The command gausswin produces an FIR window made from a truncated

Gaussian function that is centered in between the two middle points in the vec-

tor. The command pgauss produces a long window which is the Gaussian window

centered around the �rst element of the vector.

Centering the window around the �rst element makes it look unnatural when

plotting, however it has the bene�t that the Gaussian window is invariant with

respect to the DFT, and that the window generate a zero delay �lter.

The default symmetry in Matlab is the half point even (HPE) symmetry. If g is

an HPE window of length L, then

g (l) = g (L− 1− l) (4.1)

for l = 0, . . . , L− 1. This implies that g
(
L−1
2

)
must be real if L is odd.

The windows in LTFAT are whole point even (WPE) meaning that for a window

g of length L then

g (l) = g (−l) = g (L− l) (4.2)

for l = 0, . . . , L − 1. This implies that g (0) must always be real, and so must

g
(
L
2 + 1

)
if L is even. A signal g is WPE if and only if the DFT of g is real valued.

In signal processing, such a window is said to have zero phase.

All the other window functions in the toolbox work similarly to pgauss. They

return WPE windows centered around the �rst element of the vector. A routine

middlepad is included to cut or extend these kind of windows.

4.1. FIR windows

While every signal (and therefore every window) has �nite length in a �nite-

dimensional setting, we use the term �nite impulse response (FIR) for windows,

whose length is shorter than the signal length L. This is important in practical sit-

uations where long signals have to be processed, and windows as long as the signal
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Figure 4.2. The left �gure shows the magnitude response of an iterated sine window, used in the
Ogg-Vorbis audio codex. This window generates a tight Gabor frame or an orthonormal Wil-
son/MDCT basis. The �gure on the right shows the magnitude response of the Blackman window
and its dual window. Together, these windows generate a pair of dual Gabor frames, or a pair
of bi-orthogonal Wilson/MDCT bases. The magnitude response plots have been created with the
magresp command.

would incur a large computational load or a long processing delay. The utility func-

tion long2fir converts a long window into a shorter one by discarding unnecessary

values. fir2long converts short windows to full length windows.

Finite impulse response (FIR) windows can be generated by the routines firwin

and firkaiser. The routine firwin generates the classical Hann, Hamming, Black-

man and Nuttall windows, and in addition it also returns windows that gener-

ate tight Gabor frames or orthonormal Wilson/MDCT bases. These include the

sine window and the iterated sine window57. The routine firkaiser generates the

Kaiser-Bessel window (see Ref. 43 for de�nitions). The magnitude response of some

windows can be seen on Figure 4.2.

4.2. IIR windows

IIR stands for in�nite impulse response. Again this meaning of this term has to be

adapted in the �nite-dimensional setting. We refer to IIR windows, if their length is

equal to signal length L. Note that this includes any window, and not just windows

with a small number of poles in the z-domain.

The toolbox contains routines to generate Gaussian (pgauss), Sech (psech) and

Gauss-Hermite (pherm) windows. These windows are all sampled and periodised

version of their continuous counterparts. They are invariant with respect to a dis-

crete Fourier transform, just as their continuous counterparts are invariant with

respect to the Fourier transform.

The �nite, discrete Gaussian ϕw ∈ CL computed by pgauss is given by:

ϕw(l) =

(
wL

2

)−1/4∑
k∈Z

e
−π

(
(l+ct)√

L
−k
√
L
)2
/w
, (4.3)
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where the parameter w > 0 controls the ratio of the time-support and the frequency

support of the Gaussian, and ct is a centering parameter. Setting ct = 0 generates a

whole point centered function and setting ct = 1/2 generates a half point centered

function, as most Matlab �ltering routines.

The routines psech and pherm work entirely similar to pgauss taking the same

parameter w as input.

The routine pbspline can generate several di�erent classes of discrete, fractional

splines. These splines are described in detail in Ref. 50. It may also simply be used

to generate sampling of the classical B-splines.

4.3. Dual / tight windows

The canonical dual window (3.8) of a Gabor frame may be easily calculated by

gabdual, and the canonical tight window (3.9) by gabtight. For Wilson the Riesz

dual window is computed by wildual and an orthonormal window may be generated

by wilorth. For MDCT bases the same window algorithms as for Wilson can be

used.

To judge the quality of a given Gabor system, two methods are supplied. One

possibility is to consider the frame bounds (A and B from (3.5)) of a Gabor frame,

these can be calculated by gabframebounds. The ratio B
A of the frame bounds play

the exact same role as the condition number of a matrix.

Another method is to consider the reconstruction quality of a pair of windows

g, γ. The function gabdualnorm will return the maximal reconstruction error of any

signal when using the pair g, γ as windows for analysis and synthesis8,32. In partic-

ular for two windows that generate dual Gabor systems, the numerical precision is

returned.

5. Some examples of time-frequency signal processing using

LTFAT

The toolbox includes special support for some simple signal processing tasks. This

has been done to make the toolbox more self-contained, so that is it possible to

teach and demonstrate aspects of time/frequency signal processing using only the

tools available in the toolbox.

The phase vocoder25 is a well-known signal processing algorithm. It is an analysis

/ synthesis system, allowing modi�cation of the coe�cients. There are two ways to

interpret the phase vocoder18, either as �lter bank or a Gabor transform. Thus,

it can be implemented using dgt, followed by an estimation of the instantaneous

frequency using the temporal derivative of the phase, compare Section 5.1. A typical

application of the phase vocoder is time stretching. For phase vocoder techniques

the parameter a is called the hop size and M the FFT length.
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5.1. Signal analysis, visualisation and estimation

The �rst step of most signal processing problems is generally signal analysis. Time-

frequency signal analysis generally requires visualisation tools. The toolbox includes

a few plotting routines, including among others

• A spectrogram plot sgram. This is an easy-to-use function, that displays a

spectrogram of the input function. It is based on a suitable Gabor frame.

The spectrogram displays the squared amplitude of the Gabor transform,

i.e. |c (m,n)|2. A simple example is provided in demo_sgram, see Figure 5.1.
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Figure 5.1. The �gure on the left shows a spectogram of a speech signal, a female speaker pro-
nouncing the work �greasy�. The spectrogram has been generated with an equal resolution in time
and frequency. The right �gure shows a spectrogram of the same signal, but with a time resolution
of 20 ms. This is the output of demo_sgram.

• A phase plot, illustrated in demo_phaseplot, see Figure 5.2. In the spectro-

gram the information about the complex angle of the coe�cients c (m,n),

i.e. the phase, is lost. The phase may sometimes reveal features not visible

on the spectrogram14.

Notice that the phase of the stft as de�ned in (3.1) is generally not in-

terpretable, as it is not time-covariant: the phase of a shifted copy of the

signal is not equal to the shifted copy of the original signal's phase. The

phase-locked version, in which covariance has been restored, is generally

preferred. For example, in the phase-locked version, constant phase lines

converge to the locations of singularities, as can be seen in Figure 5.2. The

phase-locked version STFTL of the stft is linked to the classical one by the

expression

STFTL(m,n) =

L−1∑
l=0

f(l)g(l − n)e−2iπm(l−n)/L =

= e2iπmn/LSTFT(m,n) , m, n = 0, . . . L .
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Phase locking (resp. phase unlocking, i.e. the inverse transformation) of

Gabor transform is implemented in phaselock (resp. phaseunlock).
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Figure 5.2. This �gure is part of the output from demo_phaseplot. (TOP): The synthetic signal
analyzed. (MIDDLE): The non-phaselocked phase values. (BOTTOM): The phaselocked phase.

Visualisation is generally the �rst step in a signal processing task. The visualised

time-frequency transform can then be processed in various ways, for example for

signal or parameter estimation. The toolbox also provides useful alternative repre-

sentations, including time-frequency phase gradients, which are of interest in some

signal processing applications, and reassigned Gabor transforms. The gabphasegrad

function provides numerical estimates of the time and frequency derivatives of the

Gabor transform phase, or more precisely the di�erence between the latter and the

intrinsic derivatives at the given time-frequency point. These estimates are useful

for example for computing reassigned spectrograms. Reassignment was proposed as

a way to enhance the time-frequency resolution of the usual spectrogram, see Ref. 2

for a review. An example (which can be generated using the script demo_reassign)

is provided in Figure 5.3.

5.2. Time variant �ltering

Time-invariant �lter are systems, where the frequency spectrum is multiplied by a

�xed function, called the transfer function43, also de�ned as the Fourier transform of
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Figure 5.3. Gabor transform modulus (left) and reassigned Gabor transform modulus (right) of a
bat sonar signal.

the �lter's impulse response. Using the Fourier transform to calculate the spectrum,

such an operator can also be called a Fourier multiplier. This technique has been

used for many years and �nds a wide range of applications in all areas of signal

processing, for example in audio applications52.

A generalisation of this technique is the so called time-variant �ltering59, which

has become more important recently. In time variant �lters, the impulse response

varies with time, and the Fourier transform is not adequate any more. Localised

versions of spectral analysis can be used to characterise and synthesise such �lters. If

the STFT is used in its sampled version, the Gabor transform, one possibility to con-

struct a time variant �lter is the usage of Gabor multipliers22, as in Equation (1.4)b.

The latter consists of Gabor transform, followed by pointwise multiplication with

a �xed time-frequency vector (called the symbol) and then by inverse Gabor trans-

form. These operators have been already used for quite some time implicitly in

engineering applications and recently have been used in signal-processing applica-

tions as time-variant �lters called Gabor �lters40. Recent applications can be found

for example in the �elds of source separation63, system estimation38 or psychoacous-

tical modelling9. The blind source separation application relies on the assumption

that several observations of the signal are available that are linear combinations of

unknown sources with unknown coe�cients, and that the e�ective supports of the

time-frequency representations of the sources do not overlap. In such a situation,

the supports can be estimated, and the di�erent sources recovered by applying an

bSuch operators can be de�ned for any kind of frames3, including also Wilson or MDCT bases.
However redundancy allows one to describe larger classes of operators. These operators are natu-
rally connected to the concept of weighted frames5. If the symbol is shifted to the involved frames,
the multiplier corresponds to the frame operator of the weighted frames.
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Figure 5.4. Comparison of the spectrogram of the output signal of a slowly time-varying system
(TOP) and the the best approximation by a Gabor multiplier (BOTTOM) applied on the same
signals, on a sinusoid (LEFT) and an exponential sweep (RIGHT) . This is a part of the output
of demo_gabmulappr.

appropriate time-frequency multiplier to the signal. The symbol of the latter may

be either binary (in the so-called DUET approach), or more elaborate.

The toolbox contains a routine gabmul for easy application of Gabor multipliers,

whose analysis and synthesis windows, lattice constants and symbol can be speci�ed

by the user. The script demo_gabmul shows the e�ect of Gabor multipliers on a

Gaussian white noise, with various choices of the multiplier's symbol.

While any linear transformation can be written as a time-variant �lter, Ga-

bor multipliers only describe a subclass of these. However, Gabor multipliers can

also yield good quality approximations for many time-varying �lter, provided pa-

rameters are suitably chosen. The function gabmulappr provides optimal Gabor

multiplier approximations for any linear operator (represented by its matrix), us-

ing the algorithm presented in Ref. 20c. The use of this function is exempli�ed in

demo_gabmulappr.

Gabor Multipliers can only approximate operators well with localised spreading

cTogether with a reference code4 which can be used for any type of frame.
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function20, i.e. containing only small time and frequency shifts. For �lters, i.e. linear

time-variant system, this means that only �lters with a small support of the impulse

response can be well approximated by Gabor Multipliers7. Such an approach is used

in some software systems to e�ciently implement linear time-variant systems.

For time-variant systems this fact is displayed in Figure 5.4. A slowly time-

varying system and its best approximation by a Gabor multiplier are applied on

a sinusoid and an exponential sweepd. In the �gure it can be seen that the 'lo-

cal behaviour' is caught by the multiplier, but large time-frequency shifts are not

represented.

5.3. Denoising

Denoising, or noise reduction, is one of the classical tasks in signal processing (see

Ref 61 and references therein). Denoising is often performed by time-invariant �l-

tering (as for example the Wiener �lter), which is often implemented by pointwise

multiplication in the Fourier domain. When the noise is non-stationary, denoising

can also be realised through time-varying �ltering, using time-frequency multipliers.

However, the emergence of time-frequency tools has made it possible to develop

e�cient methods for performing denoising using thresholding strategies19. The ra-

tionale is the following. If a signal of interest is represented by a sparse expansion

with respect to a given basis, noise is generally not. Therefore, the signal's energy

is concentrated in a small number of coe�cients, while the noise's energy is spread

on all coe�cients. Thresholding the coe�cients of the noisy signal allows one to get

rid of most of the noise contribution.

Coe�cient thresholding is usually performed in two di�erent ways. Denote by

ck the coe�cients of the expansion of a signal with respect to a given system. Hard

thresholding Hτ simply sets to zero all coe�cients values ck whose modulus is lower

than a given threshold τ :

Hτ ck =

{
ck if |ck| ≥ τ
0 otherwise.

Soft thresholding Sτ sets to zero all coe�cients values ck whose modulus is lower

than a given threshold τ and decreases the modulus of the other by τ :

Sτ ck =

{
sgn(ck)(|ck| − τ) if |ck| ≥ τ
0 otherwise.

The toolbox includes tools for hard and soft coe�cient thresholding, both imple-

mented in the thresh code.

It is known that local Fourier type bases allow a sparse representation of most

audio signals. An example of audio signal denoising using hard and soft thresholding

of MDCT coe�cients is provided in the function demo_audiodenoise. Correspond-

ing numerical results are shown in Figure 5.5. In that example, the noise was an

dExponential sweeps are often used for system estimation in audio applications38,37.



July 17, 2014 20:6 WSPC/WS-IJWMIP ltfatnote015

The Linear Time Frequency Toolbox 19

Figure 5.5. Denoising of glockenspiel audio signal using Hard and Soft thresholding of MDCT
coe�cients. Input SNR: 6.0 dB; Output SNR (Hard): 7.22 dB; Output SNR (Soft): 13.30 dB

additive white Gaussian noise, and the threshold has been chosen in such a way

that the number of signi�cant MDCT coe�cients after denoising be approximately

the same as the number of signi�cant MDCT coe�cients of the original signal. In

practical situations, the threshold has to be estimated from data, which makes the

denoising problem harder.

Coe�cient thresholding has introduced itself naturally into the context of vari-

ational formulations of denoising. For example, given an orthonormal basis {ϕk},
the variational denoising problem (termed the lasso problem)

min
α

1
2

∥∥∥∥∥x−∑
k

αkϕk

∥∥∥∥∥
2

2

+ λ‖α‖1


is solved by αk = Sλ〈x, ϕk〉. This is not true any more when {ϕk} is a more general

frame, but dedicated iterative algorithms (based upon soft thresholding17) can yield

the solution. Such algorithms are implemented in the function gablasso for Gabor

frames. The script demo_gablasso provides an illustration of the use of the function.

The toolbox also includes other related functions, such as wmdctlayerdecomp, which

solves the same `1-penalised regression problem in a union of two MDCT bases in-

stead of a Gabor frame (using block coordinate relaxation algorithms55,35) and vari-

ants exploiting mixed norms regularisations34 (see gabglasso, demo_gabglasso,

wmdctglayerdecomp, and demo_layerdecomp). A nice outcome of the layer decom-

position is that it allows separate estimation of the components with respect to the

two bases. An example of such a decomposition is provided in demo_layerdecomp,

in which a synthetic signal is created as the sum of two sparse expansions with

respect to two MDCT bases, and the two components are recovered up to a small

error. An example can be found in Figure 5.6.
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Figure 5.6. Layer decomposition: decomposition of a synthetic signal as a sum of two components
(layers) that are sparsely represented in two di�erent MDCT bases.

5.4. Signal compression

Signal compression (see Ref. 33 for an introduction), aims at representing a signal

with maximal �delity, using minimal storage. Transform coding is one of the most

popular signal compression techniques. Transform coding starts by expanding the

signal on a given basis. Then only the most signi�cant coe�cients of the expansion

are retained, which provide an approximation of the signal. Finally, the retained

coe�cients are quantised, i.e. represented using a �nite (small) number of bits.

MDCT bases form the main building block for transform coding of audio signals.

After an MDCT expansion, the signi�cant coe�cient selection is generally done by

keeping the MDCT coe�cients corresponding to lower frequencies, i.e. coe�cients

w (m,n) with values of m lower than some reference value M1. These retained

coe�cients are then quantised, after a suitable weighting. Such schemes are called

linear transform coding schemes.

An alternative, called non-linear transform coding, follows a di�erent rule for

the selection of signi�cant coe�cients. Instead of retaining low frequency coe�-

cients, the coe�cients with largest magnitude (after frequency dependent weighting

if needed) are retained. The approximation error in such approaches may be proved

to be always lower than the approximation error of the corresponding linear trans-

form coding scheme (for the same number of retained coe�cients).

An example of audio signal linear and non-linear approximation is provided in

the function demo_audiocompress. Corresponding results are shown in Figure 5.7,

where are plotted the values of SNR (Signal to Noise ratio)

SNR = 20 log10

(
σx
σe

)
as a function of the number of retained coe�cients, σx being the signal's stan-

dard deviation, and σe being the standard deviation of the (linear or non-linear)
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Figure 5.7. Output signal to noise ratio for linear and non-linear approximation of glockenspiel
audio signal using MDCT coe�cients, as a function of the number of MDCT coe�cients retained
in the approximation.

approximation error.

However, it is worth mentioning that in non-linear coding schemes, reconstruc-

tion from retained coe�cients is only possible if their �addresses� (i.e. corresponding

values of (m,n)), termed signi�cance maps, are stored as well, which represents a

signi�cant amount of side information. E�cient strategies for representing signi�-

cance maps are then necessary.

5.5. OFDM transmission

Orthogonal Frequency Division Multiplexing is a widely used technique for trans-

mitting digital signals. The idea is to generate a series of pulses that are mutually

orthogonal. The pulses carry the information, and the orthogonality ensures that

the method is robust against noise, delay, dispersion etc.

A non-redundant Gabor system (a Gabor Riesz sequence) with time-shift a =

K and number of channels M = N is a good model of an OFDM system (non-

redundancy means that K >= L). Furthermore, such a system is related to the

corresponding redundant Gabor frame with a time-shift of a = N and number of

channels M = K. If two windows g and γ are canonical dual with respect to the

redundant Gabor system, then they are also dual windows for the non-redundant

system (for its closed linear span). Using this property, the standard routines for

computing tight and dual windows can be used for the construction of orthogonal

and bi-orthogonal windows for OFDM. The toolbox includes an example demo_ofdm

that demonstrates the various aspects of OFDM transmission using Gabor frames.

For more information on using Gabor and Wilson systems for OFDM, see Ref. 54,

10.
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6. Implementation

The toolbox uses two di�erent algorithms for computing a DGT, depending on the

type of window.

If an FIR window is used a weighted overlap-add based approach will be used.

The algorithms are based on an simple application of the FFT in each timestep. This

gives a computational complexity of O (NM logM +Nd), where M is the number

of channels, N is the number of time shifts, and d is the length of the window.

The long window variants are used when the window has the same length as the

signal. A thorough analysis of the computational complexity of the main algorithms

in LTFAT is presented in Ref. 51 and is based on previous work on matrix factori-

sations of Gabor operators done in Ref. 47, 53. The long window algorithm requires

all data to be available before computing the transform. This makes it unsuitable

for streaming data through a DSP, but it poses no problem in Matlab. The long

window algorithm has complexity O (NM logM + Lq), where L is the length of

the signal, MN is the total number of coe�cients and q appears in the redundancy
q
p written as an irreducible fraction (i.e. for a Gabor frame with redundancy 1.25,

q = 5. For a Wilson basis q = 2 always).

The DGT algorithms (for either FIR or full length windows) are also used to

calculate the canonical dual and tight windows, frame bounds and the dual norm

measure. If the number of frequency binsM is larger than the size of an FIR window

('painless non-orthogonal case'), the canonical dual window can be calculated very

e�ciently, as the frame operator is diagonal and can therefore be easily inverted.

Otherwise, canonical dual windows of FIR windows are calculated by using the

full-length window algorithms.

Wilson and MDCT bases are also handled by the DGT algorithm by the use

of pre/post processing stages. This is very convenient, as it makes it possible to

speed up the whole toolbox by optimising a single algorithm. For this reason, a

C-implementation of the DGT algorithms is included in the toolbox, as well as

interfaces for Octave and Matlab (Mex) to use this library. The library links to the

e�cient FFT implementation (FFTW27) included in both Octave and Matlab, and

to the BlAS and LAPACK libraries for necessary linear algebra routines.

The instruction ltfatmex compiles the C code and generates corresponding mex

�les.

The discrete sine and cosine transforms are computed by the classic algorithms

published in Ref. 58.

7. Perspectives and Outlook

In the following section we will describe some of the possible topics and features

that the toolbox could include in future versions.
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7.1. Less structured time-frequency representations

The time-frequency representations currently in the toolbox are generated from a

single window, a �xed hop-size and a �xed number of channels. By allowing more

general choices for these three parameters, it is possible to create frames and bases

that can be better suited for speci�c applications.

As an example, if the window is allowed to depend on the channel, it is possible

to create uniform �lter banks, as described in Ref. 13. Such systems can be tailored

to provide models of the human auditory system, where the frequency resolution

(the width in frequency of each window) depends in a non-linear way on the centre

frequency of the channels. Another interesting class of system is the non-stationary

Gabor frames31,6 , where the window, hop-size and number of channels may change

with time. Such systems can be used for e�cient models of music because the

resolution can be adapted to be narrow in time for onsets and transient sounds and

to be wide in time for harmonic sounds.

7.2. Wavelets

The biggest goal for future development of the toolbox is to include a self-contained

implementation of various Wavelet transforms. A possible solution will be to inte-

grate other existing open-source Wavelet toolboxes30, and in this way ensure that

they will continue to be developed and maintained.

7.3. Structural improvements

We would like to expand the processing capabilities of the toolbox by including

block-processing methods. These are routines that allow standard transforms like

the DGT to be applied to blocks of a signal in such a way that the output blocks

can be assembled to generate the results. This way of processing is commonly used

in systems that continuously generate and process data, like real-time applications.

Another computational improvement of the toolbox will be to implement parallel

processing capabilities for the most demanding methods. The target for optimisation

will be the standard computer architecture where 2-8 tightly integrated processors

share a common memory subsystem.

7.4. Various minor improvements

In addition to extending the toolbox with more time-frequency transforms, a number

of smaller additions are also considered. These includes the Discrete Fractional

Fourier transform44, more support for Hermite functions41, detection of ridges in

signals15, better support for construction of non-canonical dual Gabor windows,

Gabor analysis on non-rectangular grids21, e�cient computation of the S0 norm

and non-linear spectrogram reconstruction methods28.
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