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Abstract

A method for constructing non-uniform filter banks is presented. Starting from a uniform system of
translates, generated by a prototype filter, a non-uniform covering of the frequency axis is obtained
by composition with a warping function. The warping function is a C1-diffeomorphism that deter-
mines the frequency progression and can be chosen freely, apart from minor technical restrictions.
The resulting functions are interpreted as filter frequency responses and, combined with appropri-
ately chosen decimation factors, give rise to a non-uniform analysis filter bank. Classical Gabor and
wavelet filter banks are obtained as special cases. Beyond the state-of-the-art, we construct a filter
bank adapted to a frequency scale derived from human auditory perception and families of filter
banks that can be interpreted as an interpolation between linear (Gabor) and logarithmic (wavelet)
frequency scales. For any arbitrary warping function, we derive straightforward decay conditions
on the prototype filter and bounds for the decimation factors, such that the resulting warped filter
bank forms a frame. In particular, we obtain a simple and constructive method for obtaining tight
frames with bandlimited filters by invoking previous results on generalized shift-invariant systems.

Keywords: time-frequency; adaptive systems; frames; generalized shift-invariant systems;
non-uniform filter banks; warping

1. Introduction

In this contribution, we introduce a class of non-uniform time-frequency systems optimally
adapted to non-linear frequency scales. The central paradigm of our construction, and what dis-
tinguishes it from previous approaches, is to provide uniform frequency resolution on the target
frequency scale. Invertible time-frequency systems are of particular importance, since they allow
for stable recovery of signals from the time-frequency representation coefficients. Therefore, we also
derive necessary and sufficient conditions for the resulting systems to form a frame.

To demonstrate the flexibility and importance of our construction, illustrative examples recreat-
ing (or imitating) classical time-frequency representations such as Gabor [32, 34, 29, 30], wavelet [44,
15] or α-transforms [12, 31, 47] are provided. While this paper considers the setting of (discrete)
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Hilbert space frames, the properties of continuous warped time-frequency systems are investigated
in the related contribution [40]. Whenever a time-frequency filter bank adapted to a given fre-
quency progression and with linear time-progression in each channel is desired, we believe that the
proposed warped filter banks provide the right framework for its design.

In the proposed method, generalized shift-invariant (GSI) systems [56, 37, 10, 3] over L2(R) are
constructed from a prototype frequency response θ via composition with a warping function that
specifies the desired frequency scale/progression. To highlight the relation of the resulting warped
time-frequency systems to non-uniform filter banks, we use terminology from filter bank theory and
refer to GSI systems as (analysis) filter banks, despite operating on L2(R) instead of the sequence
space `2(Z).

It will be shown that warped time-frequency systems provide a very natural and intuitive frame-
work for time-frequency analysis on non-linear frequency scales. Most importantly, invertible sys-
tems are constructed with ease, in particular tight filter bank frames with bandlimited filters can
be obtained through a very simple procedure. Moreover, the selection of appropriate decimation
factors (sampling steps) is simplified by the filter bandwidths’ direct link to the derivative of the
warping function, leading to a canonical choice of natural decimation factors. These decimation fac-
tors are determined for all frequency channels simultaneously by the selection of a single parameter
ã > 0. Importantly, we show that natural decimation factors and expected decay conditions on the
prototype θ ensure that a warped filter bank is a Bessel sequence and satisfies the important local
integrability condition for GSI systems, see [37, 10]. Additionally, under these conditions, there is
a safe region of small enough choices for ã, such that the resulting warped filter bank is guaranteed
to be a frame. The later sections of this contribution are concerned with providing some examples
for the given abstract framework, as well as its adaptation to digital signals in `2(Z), see also [39],
where warped filter banks for `2(Z) were first presented.

Adapted time-frequency systems. Time-frequency (or time-scale) representations are an
indispensable tool for signal analysis and processing. The most widely used and most thoroughly
explored such representations are certainly Gabor and wavelet transforms and their variations,
e.g. windowed modified cosine [53, 54] or wavelet packet [11, 64] transforms. The aforementioned
transforms unite two very important properties: There are various, well-known necessary and/or
sufficient conditions for stable inversion from the transform coefficients, i.e. for the generating func-
tion system to form a frame. In addition to the perfect reconstruction property, the frame prop-
erty ensures stability of the synthesis operation after coefficient modification, enabling controlled
time-frequency processing. Furthermore, efficient algorithms for the computation of the transform
coefficients and the synthesis operation exist for each of the mentioned transforms [60, 44].

While providing a sound and well-understood mathematical foundation, Gabor and wavelet
transforms are designed to follow two specified frequency scales: linear, respectively logarithmic.
A wealth of approaches exists to soften this restriction, e.g. decompositions using filter banks
[13, 14, 62, 6], for example based on perceptive frequency scales [36, 59, 52]. Adaptation over time
is considered in approaches such as modulated lapped transforms [45], adapted local trigonometric
transforms [63] or (time-varying) wavelet packets [55]. Techniques that jointly offer flexible time-
frequency resolution and variable redundancy, the perfect reconstruction property and efficient
computation are scarce however. The setting of so-called nonstationary Gabor transforms [3], a
recent generalization of classical Gabor transforms, provides the latter 2 properties while allowing for
freely chosen time progression and varying resolution. In this construction, the frequency scale is still
linear, but the sampling density may be changed over time. The properties of nonstationary Gabor
systems are a matter of ongoing investigation, but a number of results already exist [38, 19, 18].
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When desiring increased flexibility along frequency, generalized shift-invariant systems [56, 37, 8,
7, 10], or equivalently (non-uniform) filter banks [2], provide the analogous concept. They offer full
flexibility in frequency, with a linear time progression in each filter, but flexible sampling density
across the filters. Analogous, continuously indexed systems are considered in [58, 41]. Indeed,
nonstationary Gabor systems are equivalent to filter banks via an application of the (inverse)
Fourier transform to the generating functions. Note that all the widely used transforms mentioned
in the previous paragraph can be interpreted as filter banks.

Adaptation to non-linear frequency scales through warping. There have been previous
attempts to construct adapted filter banks by frequency warping. All previous methods have in
common, however, that they focus on unitary warping operators that cannot provide the shape-
preserving property that is central to our approach. Therefore, the properties of the resulting
systems and the challenges faced in their construction are quite different.

For example, Braccini and Oppenheim [51], as well as Twaroch and Hlawatsch [61], propose a
unitary warping of a collection system of translates, interpreted as filter frequency responses. In [51]
only spectral analysis is desired, while time-frequency distributions are constructed in [61], without
considering signal reconstruction.

The application of unitary warping to an entire Gabor or wavelet system has also been investi-
gated [5, 4, 23, 24]. Although unitary transformation bequeaths basis (or frame) properties to the
warped atoms, the resulting system is not anymore a filter bank. Instead, the warped system pro-
duces undesirable, dispersive time-shifts and the resulting representation is not easily interpreted,
see [23]. Only for the continuous short-time Fourier transform, or under quite strict assumptions
on a Gabor system, a redressing procedure can be applied to recover a GSI system [21]. In all other
cases, the combination of unitary warping with redressing complicates the efficient, exact computa-
tion of redressed warped Gabor frames, such that approximate implementations are considered [22].

Finally, it should be noted that the idea of a (non-unitary) logarithmic warping of the frequency
axis to obtain wavelet systems from a system of translates was already used in the proof of the
so called painless conditions for wavelets systems [16]. However, the idea has never been relaxed
to other frequency scales so far. While the parallel work by Christensen and Goh [9] focuses on
exposing the duality between Gabor and wavelet systems via the mentioned logarithmic warping,
we will allow for more general warping functions to generate time-frequency transformations beyond
wavelet and Gabor systems. The proposed warping procedure has already proven useful in the area
of graph signal processing [57].

2. Preliminaries

We use the following normalization of the Fourier transform f̂(ξ) := Ff(ξ) =
∫
R f(t)e−2πitξ dt,

for all f ∈ L1(R) and its unitary extension to L2(R). The inverse Fourier transform is denoted by
qf = F−1f . For an open interval D ⊂ R, typically D = R or D = R+, we use the slightly unusual
convention that L2(D) := {f ∈ L2(R) : f(t) = 0 for almost every t ∈ R \D}, such that the Fourier
transform and its inverse restrict naturally to L2(D). Note that this space is canonically isomorphic
to the usual space of square-integrable functions f : D → R. Following this convention, we denote
by L2,F (D) the space of functions whose Fourier spectrum is restricted to D and

L2,F (D) := F−1
(
L2(D)

)
⊆ L2(R).

Further, we require the modulation operator and the translation operator defined by Mωf =
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f · e2πiω(·) and Txf = f(· − x) respectively for all f ∈ L2(R). The composition f(g(·)) of two
functions f and g is denoted by f ◦ g and the standard Lebesgue measure by µ.

When discussing the properties of the constructed function systems in the following sections, we
will repeatedly use the notions of weight functions and weighted Lp-spaces, 1 ≤ p ≤ ∞. Weighted
Lp-spaces are defined as

Lpw(R) := {f : R 7→ C : wf ∈ Lp(R)} .

with a continuous, nonnegative function w : R 7→ [0,∞) called weight function. The associated
norm is ‖f‖Lpw := ‖wf‖Lp . In the following, when the term weight function is used, continuity and
non-negativity are always implied.

Two special classes of weight functions are of particular interest: Continuous, positive weight
functions v : R → R+ and w : R → R+ are called submultiplicative and v-moderate respectively if
they satisfy

v(x+ y) ≤ v(x)v(y), and w(x+ y) ≤ Cv(x)w(y), (1)

for all x, y ∈ R and some positive constant C. In particular, we can (and will) always choose v such
that 1 is a valid choice for the constant in the latter inequality (max{C, 1}v is submultiplicative
whenever v is). Submultiplicative and moderate weight functions play an important role in the the-
ory of function spaces, as they are closely related to the translation-invariance of the corresponding
weighted spaces [25, 34], see also [35] for an in-depth analysis of weight functions and their role in
harmonic analysis.

A generalized shift-invariant (GSI) system on L2(R) is a union of shift-invariant systems {Tnamhm ∈
L2(R) : n ∈ Z}, with hm ∈ L2(R) and am ∈ R+, for all m in some index set. The representation
coefficients of a function f ∈ L2(R) with respect to the GSI system are given by the inner products

cf (n,m) := 〈f,Tnamhm〉 =
(
f ∗ hm(−·)

)
(nam),

for all n,m. The above representation of the coefficients in terms of a convolution alludes to the
fact that cf (·,m) is a filtered, and sampled, version of f . This relation justifies our use of filter
bank terminology when discussing GSI systems.

Definition 2.1. Let (gm)m∈Z ⊂ L2(D) and (am)m∈Z ⊂ R+. We call the system

(gm,n)m,n∈Z , gm,n := TnamF−1(gm), for all n,m ∈ Z, (2)

a (non-uniform) filter bank for L2,F (D). The elements of (gm)m∈Z and (am)m∈Z are called frequency
responses and decimation factors, respectively.

Such filter banks can be used to analyze signals in L2,F (D), and for a given signal f ∈ L2,F (D),
we refer to the sequence cf := (cf (n,m))n,m∈Z = (〈f, gm,n〉)m,n∈Z as the filter bank (analysis)
coefficients. A uniform filter bank is a filter bank with am = a for all m ∈ Z.

For many applications it is of great importance that all the considered signals can be recon-
structed from these coefficients, in a stable fashion. It is a central observation of frame theory that
this is equivalent to the existence of constants 0 < A ≤ B <∞, such that

A‖f‖22 ≤ ‖cf‖2`2(Z2) ≤ B‖f‖
2
2, for all f ∈ L2,F (D). (3)

A system (gm,n)m,n∈Z that satisfies this condition is called filter bank frame [20, 7], and tight (filter

bank) frame if equality can be achieved in (3). If (gm,n)m,n∈Z is a frame, then the frame operator
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given by

S : L2,F (D)→ L2,F (D), Sf =
∑
m,n∈Z

cf (m,n)gm,n, for all f ∈ L2,F (D), (4)

is invertible. The frame operator is tremendously important and the key component for an appro-
priate synthesis system that maps the coefficient space `2(Z2) to the signal space L2,F (D). Namely,
the canonical dual frame (g̃m,n)m,n∈Z, obtained by applying the inverse of the frame operator to

the frame elements, i.e. g̃m,n := S−1(gm,n), for all m,n ∈ Z, facilitates perfect reconstruction from
the analysis coefficients:

f =
∑
m,n∈Z

cf (m,n)g̃m,n, for all f ∈ L2,F (D). (5)

If at least the upper inequality in (3) is satisfied, then (gm,n)m,n∈Z is a Bessel sequence. Note
that, in contrast to short-time Fourier or uniform filter bank frames, there is no guarantee that
the canonical dual frame, or indeed any dual frame, of a general filter bank frame is of the form
(TnamF−1(g̃m))n,m∈Z, for some (g̃m)m∈Z ⊂ L2(D) and the same sequence of decimation factors
(am)m∈Z. Abstract filter bank frames [6] have received considerable attention, as (generalized)
shift-invariant systems in [42, 37, 56, 10, 41] and as (frequency-side) nonstationary Gabor systems
in [3, 19, 18, 38]. In contrast, this contribution is concerned with a specific, structured family of
filter bank systems and how the superimposed structure can be used to construct filter bank frames.

3. Warped filter banks

In signal analysis, the usage of different frequency scales has a long history. Linear and log-
arithmic scales arise naturally when constructing a filter bank through modulation or dilation of
a single prototype filter, respectively. In this way, the classical Gabor and wavelet transforms are
obtained. The consideration of alternative frequency scales can be motivated, for example, from
(a) theoretical interest in a family of time-frequency representations that serve as an interpolation
between the two extremes, as is the case for the α-transform (which can be related to polynomial
scales), or (b) specific applications and/or signal classes. A prime example for the second case
is audio signal processing with respect to an auditory frequency scale, e.g. in gammatone filter
banks [52, 59] adapted to the ERB scale [33], the latter modeling the frequency progression and
frequency-bandwidth relationship in the human cochlea. The mentioned methods have in common
that they are based on a single prototype filter and possess the structure of a GSI (or filter bank)
system and that the bandwidth of the filters is directly linked to the filter center frequencies and
their spacing.

The filter banks we propose in this section have the property that they are designed as a system
of translates on a given frequency scale. This scale determines a conversion from frequency to a
new unit (e.g. ERB) with respect to which the designed filters provide a uniform resolution. In the
next sections, we will show that this construction admits a special class of non-uniform filter banks
with a simplified structure compared to general filter banks.

Formally, a frequency scale is specified by a continuous, bijective function Φ : D → R and
the transition between the non-linear scale Φ and the unit linear scale is achieved by Φ and Φ−1.
Hence, we construct filter frequency responses from a prototype function θ : R 7→ C by means of
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translation, followed by deformation,

((Tmθ) ◦ Φ)m∈Z . (6)

This general formulation provides tremendous flexibility for frequency scale design. Furthermore,
choosing Φ as Φ(ξ) 7→ aξ or Φ(ξ) 7→ loga(ξ), for a > 0, yields systems of translates Tm/a (θ(a·)) and
dilates (θ ◦ loga)(·/am), respectively. Such Φ will provide the starting point for recovering Gabor
and wavelet filter banks in our framework.

Definition 3.1. Let D ⊆ R be any open interval. A C1-diffeomorphism Φ : D → R is called
warping function, if

(i) the derivative Φ′ of Φ is positive, i.e. Φ′ > 0, and

(ii) there is a submultiplicative weight v, such that the weight function

w :=
(
Φ−1

)′
=

1

Φ′ (Φ−1(·))
(7)

is v-moderate, i.e. w(τ0 + τ1) ≤ v(τ0)w(τ1), for all τ0, τ1 ∈ R.

Given a warping function Φ, w and v will from now on always denote weights as specified in
Definition 3.1.

Remark 3.2. While moderateness and invertibility of Φ will prove essential for our results, there
are no technical obstructions preventing us from allowing warping functions Φ ∈ C0(D) \ C1(D),
such that Φ′ is only piecewise continuous. However, this implies that some (or all) of the elements
of the warped family given in (6) can have at most piecewise continuous derivative, independent of
the smoothness of θ and with the implied negative effects to their Fourier localization. Moreover,
Φ is easily lifted to C1 with minor, arbitrarily local changes. Therefore, we only see limited value
in generalizing the notion of a warping function beyond diffeomorphisms.

Proposition 3.3. If Φ : D → R is a warping function as per Definition 3.1, then Φ̃ := cΦ(·/d) is
a warping function with domain dD, for all positive, finite constants c, d ∈ R+. If w = (Φ−1)′ is
v-moderate, then w̃ = (Φ̃−1)′ is v(·/c)-moderate.

Proof. The result is easily obtained by elementary manipulation.

Several things should be noted when considering the definition and proposition above.

• Proposition 3.3 shows that it really is sufficient to consider integer translates of the prototype θ
when constructing the frequency responses θΦ,m. If a > 0 is arbitrary, then with θa := θ(·/a),
we have

(Tmθa) ◦ (aΦ) = θa (aΦ(·)−m) = θ (Φ(·)−m/a) = (Tm/aθ) ◦ Φ. (8)

• Moderateness of w =
(
Φ−1

)′
ensures translation invariance of the associated weighted Lp-

spaces. In particular, identifying (Tmθ) ◦ Φ with its trivial extension to the whole real line,
we have

‖(Tmθ) ◦ Φ‖2L2(D) = ‖Tmθ‖2L2√
w

(R) ≤

v(m)‖θ‖2
L2√

w
(R)

, if θ ∈ L2√
w

(R)

w(m)‖θ‖2
L2√

v
(R)

, if θ ∈ L2√
v
(R).

(9)
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• L2√
v
(R) ⊆ L2√

w
(R), since (9), with m = 0, implies ‖θ‖2

L2√
w

(R)
≤ w(0)‖θ‖2

L2√
v
(R)

.

A warped filter bank can now be constructed easily. To do so, after selecting the warping
function Φ, one simply chooses an appropriate prototype frequency response θ and positive, real
decimation factors (am)m∈Z. Although, in theory, the choice of decimation factors is arbitrary, the
warping function Φ induces a canonical choice, which relates a−1

m to the essential support of the
frequency responses and is particularly suited for the creation of warped filter bank frames, see
Section 4.

Definition 3.4. Let Φ : D → R be a warping function and θ ∈ L2√
v
(R). Furthermore, let

a := (am)m∈Z ⊂ R+ be a set of decimation factors. Then the warped filter bank with respect to the
triple (Φ, θ,a) is given by

G(Φ, θ,a) := (Tnam |gm)m,n∈Z =
(
TnamF−1(gm)

)
m,n∈Z , (10)

with

gm(ξ) :=

{√
am(Tmθ) ◦ Φ(ξ) if ξ ∈ D,

0 else.
(11)

If am = ã/w(m), for all m ∈ Z and some ã > 0, then we say that a is a set of natural decimation
factors (for (Φ, θ)).

Natural decimation factors are very important, as they guarantee uniform L2-boundedness of
the gm, recall (9), which is in turn easily seen to be necessary for the Bessel property.

Remark 3.5. Note that the condition θ ∈ L2√
w

(R) would be sufficient to ensure that G(Φ, θ,a) ⊂
L2,F (D). In that setting, a set of natural downsampling factors would have the form am = ã/v(m)
for all m ∈ Z and some ã > 0, instead. All results in this contribution also hold in this case and
are proven with the same techniques. Since a decay condition on θ is usually considered less severe
than a restriction of the sampling density, our results are presented for the configuration given in
Definition 3.4.

However, depending on how much the submultiplicative weight v deviates from w = (Φ−1)′, the
two sets of natural decimation factors, and the spaces of eligible prototype functions, may differ
significantly. Therefore, we shortly discuss the necessary changes in the case θ /∈ L2√

v
(R) in Section

4.1.

Assume for now that θ ∈ L2√
v
(R) ∩L1

w(R). If we rewrite the elements of G(Φ, θ,a) as a Fourier

integral, i.e.

F−1(gm)(t) =

∫
R
gm(ξ)e2πiξt dξ

=
√
am

∫
D

θ(Φ(ξ)−m)e2πiξt dξ =
√
am

∫
R
w(τ +m)θ(τ)e2πiΦ−1(τ+m)t dτ,

with the change of variable ξ = Φ−1(τ + m), we can see that decay (smoothness) of θ implies
smoothness (decay) for the elements of G(Φ, θ,a), provided that Φ is smooth enough as well. This
behavior is crucial for the construction of systems with good time-frequency localization and in
fact central for the results presented in [40], where the above Fourier integrals are studied in more
detail.
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We now provide some examples of warping functions that are of particular interest, e.g. because
they encompass important frequency scales. In Proposition 3.11 at the end of this section, we show
that the presented examples indeed define warping functions in the sense of Definition 3.1. Some
instances of the warping functions in the following examples can be seen in Figure 1.

Example 3.6 (Wavelets). Choosing Φ = log, with D = R+ leads to a system of the form

gm(ξ) =
√
amθ(log(ξ)−m) =

√
amθ(log(ξe−m)) =

√
am
a0
g0(ξe−m).

This warping function therefore leads to gm being a dilated version of some g0 = θ ◦ log. The
natural decimation factors are given by am = ã/w(m) = ãe−m. This shows that G(log, θ, ãe−m)
is indeed a wavelet system, with the minor modification that our scales are reciprocal to the usual
definition of wavelets.

Example 3.7. The family of warping functions Φl(ξ) = c
(
(ξ/d)l − (ξ/d)−l

)
, for some c, d > 0 and

l ∈ (0, 1], is an alternative to the logarithmic warping for the domain D = R+. The logarithmic
warping in the previous example can be interpreted as the limit of this family for l→ 0 in the sense
that for any fixed ξ ∈ R+,

Φ′l(ξ)/l =
c

d

(
(ξ/d)−1+l + (ξ/d)−1−l) l→0→ 2c

ξ
=

2c

d
log′(ξ/d).

This type of warping provides a frequency scale that approaches the limits 0 and ∞ of the
frequency range D in a slower fashion than the wavelet warping. In other words, gm is less deformed
for m > 0, but more deformed for m < 0 than in the case Φ = log. Furthermore, the property that
gm can be expressed as a dilated version of g0 is lost.

Example 3.8 (ERBlets). In psychoacoustics, the investigation of filter banks adapted to the spectral
resolution of the human ear has been subject to a wealth of research, see [46] for an overview. We
mention here the Equivalent Rectangular Bandwidth scale (ERB-scale) described in [33], which
introduces a set of bandpass filters modeling human perception, see also [48] for the construction of
an invertible filter bank adapted to the ERB-scale. In our terminology the ERB warping function
is given by

ΦERB(ξ) = sgn (ξ) c log

(
1 +
|ξ|
d

)
,

where the constants are given by c = 9.265 and d = 228.8. Using this function, we obtain a filter
bank with an equivalent time-frequency resolution trade-off to the construction in [48] or more
traditional Gammatone filter banks on the ERB-scale, see e.g. [59]. However, we will see in Section 4
that it is very easy to construct tight and snug warped filter banks, while at least tightness is usually
not achievable by these previous constructions. The ERB filter bank has potential applications
in audio signal processing, as it provides a perfectly invertible transform adapted to the human
perception of sound.

Example 3.9. Filter banks obtained from the warping functions Φα(ξ) = sgn(ξ)
(
(|ξ|+ 1)1−α − 1

)
,

for some α ∈ [0, 1) can serve as a substitute for the α-transform, see [12, 31, 47, 26]. The latter is
a filter bank constructed from a single prototype frequency response by translation and dilation,
leading to filters with bandwidth proportional to (1 + |ξ|)α, where ξ ∈ R is the center frequency of
the filter frequency response. Varying α, one can interpolate between the Gabor transform (α = 0,
constant time-frequency resolution) and a wavelet-like (or more precisely ERB-like) transform with
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the dilation depending linearly on the center frequency (α → 1). It is easy to confirm that the
warping function Φα(ξ) yields the same qualitative center frequency to bandwidth relationship. We
will see in subsequent sections that, in stark contrast to the α-transform, it is easy to construct tight
frames using the warping function Φα. Note as well that study of the α-transform usually excludes
the limiting case α = 1, which is also not captured by the above warping construction. However,
the logarithmic warping considered in Example 3.8 yields filters with bandwidth proportional to
(1 + |ξ|) and can thus be considered as substitute for the limiting case.

Example 3.10. Finally, we propose a warping function for representing functions band-limited to
the interval D = (−π, π). For this purpose set Φ(ξ) = tan(ξ). Necessarily, the frequency responses
gm, given by (11), are all compactly supported on D and increasingly peaky and concentrated at
the upper and lower borders of D, as m tends to∞ and −∞, respectively. By using the equivalence
of GSI systems and nonstationary Gabor systems [3] through application of the Fourier transform,
we can thus construct time-frequency systems on arbitrary open intervals. Frames for intervals
have been proposed previously by Abreu et al. [1].
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Figure 1: (left) Warping functions from Examples 3.6 and 3.7: This plot shows logarithmic (wavelet) warping function
(black) and Φl = l−1(ξl − ξ−l), for l = 0.5 (dark gray), l = 0.8 (medium gray) and l = 1 (light gray). Note that the
horizontal axis is logarithmic. (right) Warping functions from Examples 3.8 and 3.9. This plot shows the ERBlet
warping function (black), with c = d = 1, and Φα = (1 − α)−1 sgn(ξ)((1 + |ξ|)(1−α) − 1), for α = 0.5 (dark gray),
α = 0.2 (medium gray) and α = 0 (light gray). The horizontal axis is linear.

Proposition 3.11. The following are valid triples of warping functions, weights w and moderating
submultiplicative weights v, as per Definition 3.1:

(i) Φ : R+ → R, ξ 7→ log(ξ), with w = v = e(·).
(ii) Φ : R+ → R, ξ 7→

(
(ξ)l − (ξ)−l

)
, for l ∈ (0, 1], with

w = l−1

( 2

(·) +
√

(·)2 + 4

)(l−1)/l

+

(
(·) +

√
(·)2 + 4

2

)(l+1)/l
 and v = (2+|·|/2)(2+2l)/l.
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(iii) Φ : R→ R, ξ 7→ sgn(ξ) log(1 + |ξ|) with w = v = e|·|.

(iv) Φ : R → R, ξ 7→ sgn(ξ)
(
(1 + |ξ|)1−α − 1

)
, for some α ∈ [0, 1), with w = v/(1 − α) =

(1− α)−1(1 + | · |)α/(1−α).

(v) Φ : (−π, π)→ R, ξ 7→ tan(ξ), with w = (1 + (·)2)−1 and v = 2(1 + (·)2).

Proof. Items (i), (iii) and (iv) are easily shown through elementary calculations. It remains to prove
items (ii) and (v).

Ad (ii): Φ is in C∞(R+) and

w(τ0) =
(
Φ−1

)′
(τ0) =

1

Φ′(Φ−1(τ0))
= l−1 Φ−1(τ0)

Φ−1(τ0)l + Φ−1(τ0)−l
.

Assume that Φ−1 is ṽ-moderate, which also implies Φ−1(τ0 + τ1) ≥ Φ−1(τ0)ṽ(−τ1)−1, then

w(τ0 + τ1) = l−1 Φ−1(τ0 + τ1)

Φ−1(τ0 + τ1)l + Φ−1(τ0 + τ1)−l
≤ w(τ0) max{ṽ(τ1), ṽ(−τ1)}l+1.

The inverse of Φ is given by Φ−1(τ0) = 2−1/l(τ0 +
√
τ2
0 + 4)1/l, for all τ0 ∈ R. If we assume that

τ1 + τ0 +
√

(τ1 + τ0)2 + 4

τ0 +
√
τ2
0 + 4

= 1 +
τ1 +

√
(τ1 + τ0)2 + 4−

√
τ2
0 + 4

τ0 +
√
τ2
0 + 4

≤ v0(τ1), (12)

for some submultiplicative function v0, then Φ−1 is ṽ-moderate with ṽ = v
1/l
0 . In fact, (12) holds

with v0 = (2 + | · |/2)2, such that we obtain v-moderateness of w with v := v
l+1
l

0 = (2 + | · |/2)
2+2l
l .

To see this, observe that

τ1 +
√

(τ1 + τ0)2 + 4−
√
τ2
0 + 4

τ0 +
√
τ2
0 + 4

≤

{
0 for all τ1 ≤ 0,

τ1√
τ2
1 /4+4−τ1/2

else,

since the left hand side attains its global maximum at τ0 = −τ1/2, for fixed τ1 > 0. Apply the
fundamental theorem of calculus with f =

√
τ2
1 /4 + (·) to obtain the estimate

τ1√
τ2
1 /4 + 4− τ1/2

≤ τ2
1 + 16

4
≤ (2 + |τ1|/2)2,

valid for all τ1 > 0, as desired.
Ad (v): The crucial step is to show that arctan′ = (1 + (·)2)−1 can be moderated by a sub-

multiplicative weight. But since (τ0 + τ1)2 ≤ 2(τ2
0 + τ2

1 ) for all τ0, τ1 ∈ R, it is easy to see that
v = 2(1 + (·)2) is submultiplicative and that w = (1 + (·)2)−1 is v-moderate. The other required
properties of Φ = tan are elementary.

4. Warped filter bank frames

Although this contribution is concerned only with warped filter bank frames, our results are
derived from structural properties and results obtained in the general, abstract filter bank (or GSI)
setting. As such, the structure imposed on warped filter banks can be seen as a constructive means
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to satisfy, or simplify, the conditions of these abstract results. Our results rely on the simple, but
crucial identity ∑

m∈Z
a−1
m |gm(ξ)|2 =

∑
m∈Z
|(Tmθ) ◦ Φ(ξ)|2, for all ξ ∈ D, (13)

which holds for every warped filter bank G(Φ, θ,a). As a consequence of the above equality, we
can find upper and lower bounds for (13), by instead determining upper and lower bounds on the
simpler quantity ∑

m∈Z
|Tmθ|2. (14)

In order to exclude pathological cases from the study of filter bank frames, it has proven useful to
assume that a filter bank (gm,n)m,n∈Z satisfies the so-called local integrability condition [37, 41, 10].
This enables the generalization of numerous important results, e.g. a characterization of dual
frames, from the frame theory of Gabor systems [34] and uniform filter banks [42].

Definition 4.1. Denote by D the set of all functions f ∈ L∞(D) with compact support. We say
that the filter bank (gm,n)m,n∈Z, generated from (gm)m∈Z ⊂ L2(D) and (am)m∈Z ⊂ R+, satisfies
the local integrability condition (LIC), if

L(f) :=
∑
m∈Z

∑
l∈Z

a−1
m

∫
supp(f)

∣∣f(ξ + la−1
m )gm(ξ)

∣∣2 dξ <∞, (15)

for all f ∈ D.

The LIC might seem intimidating and opaque at first, but once we impose some structure
on (gm,n)m,n∈Z, it can often be substituted by mild conditions on the frequency responses gm
and decimation factors am. In the case of warped filter banks, boundedness of (14) and a being
majorized by a set of natural decimation factors is already sufficient for G(Φ, θ,a) to satisfy the
LIC. Therefore, the results presented in [37, 41, 10], many of which require the LIC, are available
to a large class of warped filter banks.

Theorem 4.2. Let Φ : D → R be a warping function and θ ∈ L2√
v
(R). If

sup
m∈Z

amw(m) <∞ and ess sup
τ∈R

∑
m∈Z
|Tmθ(τ)|2 <∞, (16)

then G(Φ, θ,a) satisfies the LIC (15). In particular, if a is a set of natural decimation factors, then
G(Φ, θ,a) satisfies the LIC if the second condition in (16) holds.

Proof. First note that, instead of considering all compactly supported and essentially bounded
functions f ∈ L2(D), it is sufficient to verify the LIC (15) only for the characteristic functions 1I
on compact intervals I ⊂ D. These functions are clearly contained in L2(D) and it is easy to see
that

supp(f) ⊆ I =⇒ L(f) ≤ ‖f‖2∞L(1I).

For 1I , the LIC reads

L(1I) =
∑
m∈Z

a−1
m

∑
l∈Z

∫
I

1I+la−1
m

(ξ) |gm(ξ)|2 dξ. (17)

11



If the right hand side of (17) is finite, then it converges absolutely and we can interchange sums
and integrals freely. Hence,

L(1I) =
∑
m∈Z

a−1
m

∫
I

|gm(ξ)|2
∑
l∈Z

1I+la−1
m

(ξ) dξ

<
∑
m∈Z

amµ(I) + 1

am

∫
I

|gm(ξ)|2 dξ

=
∑
m∈Z

(amµ(I) + 1)

∫
I

|(Tmθ) ◦ Φ(ξ)|2 dξ,

where we used that
∑
l∈Z 1I+la−1

m
(ξ) ≤ damµ(I)e < amµ(I) + 1 for arbitrary ξ ∈ D. We split the

upper estimate into two terms and interchange integration and summation once more to obtain

L(1I) <

∫
I

∑
m∈Z
|(Tmθ) ◦ Φ(ξ)|2 dξ +

∑
m∈Z

amµ(I) ·
∫
I

|(Tmθ) ◦ Φ(ξ)|2 dξ.

By assumption, there is some constant B > 0, such that
∑
m∈Z |Tmθ(τ)|2 < B almost everywhere

and we can conclude that ∫
I

∑
m∈Z
|(Tmθ) ◦ Φ(ξ)|2 dξ ≤ µ(I)B.

To estimate the second term, note that the change of variable ξ = Φ−1(τ +m) yields∑
m∈Z

am ·
∫
I

|(Tmθ) ◦ Φ(ξ)|2 dξ =
∑
m∈Z

am ·
∫

Φ(I)−m
w(τ +m) |θ(τ)|2 dτ = (∗).

By assumption supm∈Z amw(m) < ∞ and θ ∈ L2√
v
(R). To estimate the right hand side of the

above equation, we can use v-moderateness of w:

(∗) ≤
∑
m∈Z

amw(m) ·
∫

Φ(I)−m
v(τ) |θ(τ)|2 dτ

=
∑
m∈Z

amw(m) ·
∫
R
1Φ(I)−mv(τ) |θ(τ)|2 dτ

= sup
m∈Z

amw(m) ·
∫
R
v(τ) |θ(τ)|2

∑
m∈Z

1Φ(I)−m dτ

< (1 + µ(Φ(I))) · sup
m∈Z

amw(m) ·
∫
R
v(τ) |θ(τ)|2 dτ

= (1 + µ(Φ(I))) · sup
m∈Z

amw(m) · ‖θ‖2L2√
v
<∞.

Altogether, we obtain

L(1I) < µ(I) ·
(
B + (1 + µ(Φ(I))) · sup

m∈Z
amw(m) · ‖θ‖2L2√

v

)
<∞,
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which establishes the desired result. If a is a set of natural decimation factors, then amw(m) = ã <
∞ for all m ∈ Z, yielding the second claim.

Note that the second condition in (16) is in fact necessary for G(Φ, θ,a) to be a Bessel sequence, as
can be seen in the next result, where we provide necessary and sufficient conditions for a warped filter
bank to form a Bessel sequence or even a frame. Proving these conditions amounts to combining
previous results from the theory of filter bank frames, in particular from [10, 3, 38], with the special
structure of warped filter banks.

Theorem 4.3. Let G(Φ, θ,a) be a warped filter bank for L2,F (D).

(i) If G(Φ, θ,a) is a Bessel sequence with bound B <∞, then∑
m∈Z
|Tmθ(τ)|2 ≤ B <∞, for almost all τ ∈ R. (18)

If G(Φ, θ,a) is a frame with lower bound A > 0 and supm∈Z amw(m) <∞, then

0 < A ≤
∑
m∈Z
|Tmθ(τ)|2, for almost all τ ∈ R. (19)

(ii) Assume that, there are constants c < d, such that supp(θ) ⊆ [c, d]. If a−1
m ≥ Φ−1(d + m) −

Φ−1(c + m), for all m ∈ Z, then G(Φ, θ,a) forms a frame for L2,F (D), with frame bounds
A,B, if and only if 0 < A ≤

∑
m∈Z |Tmθ|2 ≤ B < ∞ almost everywhere. Furthermore, the

canonical dual frame for G(Φ, θ,a) is given by G(Φ, θ̃,a), with

θ̃ =
θ∑

l∈Z |Tlθ|2
. (20)

Proof. To prove the first part of (i) apply [38, Proposition 3], which states that if G(Φ, θ,a) is a Bessel
sequence with bound B <∞, then

∑
m∈Z a

−1
m |gm(ξ)|2 ≤ B, for almost all ξ ∈ D. However, by (13),

this is equivalent to
∑
m∈Z |Tmθ|2 ≤ B almost everywhere on R. For the second part, first note that

the frame property implies the Bessel property, such that we obtain ess supτ∈R
∑
m∈Z |Tmθ(τ)|2 <

∞. Since supm∈Z amw(m) < ∞, we can apply Theorem 4.2 to ensure that G(Φ, θ,a) satisfies the
LIC. Therefore, we can apply [10, Corollary 3.4], which states that if G(Φ, θ,a) is a frame with
lower frame bound A > 0 and G(Φ, θ,a) satisfies the LIC, then A ≤

∑
m∈Z a

−1
m |gm(ξ)|2, for almost

all ξ ∈ D. Through (13), this implies (19), finishing the proof of (i).
To prove (ii), begin by noting that supp(θ) ⊆ [c, d] implies supp(gm) ⊆ [Φ−1(c + m),Φ−1(d +

m)] ⊂ D, for all m ∈ Z. Hence, we can apply [3, Corollary 1]: If a−1
m ≥ Φ−1(d+m)− Φ−1(c+m)

then G(Φ, θ,a) is a frame for for L2,F (D), with frame bounds 0 < A ≤ B <∞, if and only if

0 < A ≤
∑
m∈Z

a−1
m |gm(ξ)|2 ≤ B <∞, for almost all ξ ∈ D. (21)

Using (13) once more, this is equivalent to 0 < A ≤
∑
m∈Z |Tmθ|2 ≤ B < ∞ almost everywhere

as desired. Moreover, [3, Corollary 1] states that the canonical dual frame (g̃m,n)m,n∈Z ⊂ L2,F (D)
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has the form g̃m,n = TnamF−1(g̃m), with

g̃m(ξ) =
gm(ξ)∑

l∈Z a
−1
l |gl(ξ)|2

, for all m ∈ Z and almost every ξ ∈ D. (22)

Inserting (13), respectively the definition of the gm, we obtain

gm(ξ)∑
l∈Z a

−1
l |gl(ξ)|2

=
√
am

(Tmθ) ◦ Φ(ξ)∑
l∈Z |(Tlθ) ◦ Φ(ξ)|2

=
√
am

(
Tmθ∑
l∈Z |Tlθ|2

)
◦ Φ(ξ).

Now simply note that
∑
l∈Z |Tlθ|2 is 1-periodic to see that

Tmθ∑
l∈Z |Tlθ|2

= Tm

(
θ∑

l∈Z |Tlθ|2

)
.

Hence, with θ̃ as in (20), and trivially extending g̃m from D to R, we obtain (g̃m,n)m,n∈Z = G(Φ, θ̃,a)
as desired.

Note that the canonical dual frame in Theorem 4.3(ii) only differs from G(Φ, θ,a) by the choice
of prototype filter θ̃, which is easily computed using Eq (20). Theorem 4.3(ii) is the natural
generalization of the classical painless nonorthogonal expansions [16] to warped filter banks and
extremely useful when strictly bandlimited filters are required. The whole of Theorem 4.3 serves
as a strong indicator that for any snug frame, i.e. with B/A ≈ 1, the sum

∑
m∈Z |Tmθ|2 must

necessarily be close to constant, i.e. it is imperative that the translates of the original window θ
have good summation properties. Hence, there is an intimate relationship between stability of the
filter bank G(Φ, θ,a) and the shape of (13).

Sometimes, when we would like to work in the setting of Theorem 4.3(ii) it can be more efficient
to estimate the support of the gm instead of calculating it exactly. The following result and its
discussion below show that this can easily be done using natural decimation factors, which often
provide close-to-optimal values for the am that satisfy the conditions of Theorem 4.3(ii).

For the purpose of the following result and for later use, we define the function V : R× R→ R
by

V (τ0, τ1) :=

∫ τ1

τ0

v(τ) dτ, for all τ0, τ1 ∈ R. (23)

Corollary 4.4. Let G(Φ, θ,a) be a warped filter bank with compactly supported prototype θ ∈ L2(R).
Furthermore, define

c0 := inf supp(θ) and d0 := sup supp(θ)

and let ãw := V (c0, d0)−1. If
am ≤ ãw/w(m),

then G(Φ, θ,a) is a frame with frame bounds A,B, if and only if 0 < A ≤
∑
m∈Z |Tmθ|2 ≤ B <∞

almost everywhere. In that case, the canonical dual frame is given by G(Φ, θ̃,a), with θ̃ as in (20).

Note that V (c0, d0) can be bounded from above by (d0 − c0) maxτ∈[c0,d0] v(τ). This coarser
estimate can be used for an even simpler computation of decimation factors appropriate for Corollary
4.4, e.g. if v is nondecreasing away from zero.
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Proof of Corollary 4.4. All we need to do is to invoke the fundamental theorem of calculus to show
that Φ−1(d0 +m)− Φ−1(c0 +m) ≤ a−1

m for all m ∈ Z.

Φ−1(d0 +m)− Φ−1(c0 +m) =

∫ d0+m

c0+m

w(τ) dτ

≤ w(m) ·
∫ d0

c0

v(τ) dτ = V (c0, d0)w(m).

Therefore,
Φ−1(d0 +m)− Φ−1(c0 +m) ≤ w(m)/ãw ≤ a−1

m ,

as per the assumption. Since θ ∈ L2(R) with compact support implies θ ∈ L2√
v
(R), we can apply

Theorem 4.3(ii) to finish the proof.

In fact, without additional assumptions on the warping function Φ, the condition am ≤ ãw/w(m)
in Corollary 4.4 cannot be improved. To see this we construct a warping function, such that any
choice am > ãw/w(m) yields a−1

m < Φ−1(d)−Φ−1(c), for all nonempty, closed intervals [c, d]. Hence,
the conditions of Theorem 4.3(ii) are violated. Choose Φ = log and note Φ−1(τ) = eτ = w(τ) for
all τ ∈ R. We can choose v = w and obtain

ed0+m − ec0+m = em
∫ d0

c0

eτdτ = V (c0, d0)w(m) = (Φ−1(d0)− Φ−1(c0))v(m),

to show that for a logarithmic warping function the natural decimation factors are indeed the
coarsest possible decimation factors to satisfy the painless case conditions.

Our final set of sufficient Bessel and frame conditions is concerned with the cases that θ is
not compactly supported, but still sufficiently localized, or that larger decimation factors, not
permitted by Theorem 4.3(ii), are desired. In this setting, the verification of the frame property
becomes substantially harder. To obtain a sufficient condition, it is possible to estimate the alias
terms

∑
l 6=0 |gmTla−1

m
gm|, m ∈ Z, in the Walnut representation of the frame operator of G(Φ, θ,a),

see [41, Proposition 3.7]. The goal is to provide a decay condition on θ and a density condition
on the decimation factors a, such that the conditions of [41, Proposition 3.7] are guaranteed to
be satisfied. Note that these conditions were recently improved by Lemvig et al. [43], under the
additional, separate assumption of the so-called α-local integrability condition. However, our results
do not benefit from the sharper condition, such that we are content with relying on [41, Proposition
3.7].

One would be tempted to apply [19, Corollary 3.5], which uses decay of the gm to determine
a density condition on the am, to warped filter banks. That result imposes (at least) the follow-
ing conditions on a filter bank (gm,n)m,n∈Z ⊂ L2,F (D) generated from (gm)m∈Z ⊂ L2(D) and
(am)m∈Z ⊂ R+:

• There are constants Ã, B̃, such that 0 < Ã ≤
∑
m∈Z |gm(ξ)|2 ≤ B̃ < ∞, almost everywhere

(on D).

• There are C, ε > 0 and a δ-separated set (bm)m∈Z, i.e. infk,m∈Z |bm − bk| ≥ δ > 0, such that
|gm(ξ)| ≤ C(1 + |ξ − bm|)−(2+ε) almost everywhere.

Note that the parameter set (pk)k∈Z and (Ck)k∈Z in [19, Corollary 3.5] are required to be bounded
above and below with pk > 2 for all k. Hence, if the conditions above are violated, the conditions
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of [19, Corollary 3.5] are surely violated as well. However, these conditions pose severe restrictions
for warped filter banks. In fact, under reasonable assumptions on G(Φ, θ,a), they imply that
w = (Φ−1)′ is bounded above and thus Φ must have at least linear asymptotic growth.

Proposition 4.5. Let G(Φ, θ,a) be a warped filter bank for L2,F (D), with nonzero prototype θ, and
set bm = Φ−1(m), for all m ∈ Z. Then the following hold:

(i) If the open interval D is a true subset of R, i.e. D ( R, then for any δ > 0, there is an
m ∈ Z, such that |bm+1 − bm| ≤ δ.

(ii) If there are C0 > 0, p0 > 1/2, such that θ ≤ C0(1 + | · |)−p0 and there are constants Ã, B̃,
such that 0 < Ã ≤

∑
m∈Z |gm|2 ≤ B̃ < ∞ almost everywhere, then supm∈Z am < ∞ and

lim supm→∞ am 6= 0 6= lim supm→−∞ am.

(iii) If the assumptions of (ii) hold and additionally there are constants p, C > 0, such that |gm| ≤
C(1 + |(·)− bm|)−p almost everywhere, for all m ∈ Z, then w = (Φ−1)′ ∈ L∞(R).

Proof. Ad (i): Assume without loss of generality that D is bounded below with inf{ξ : ξ ∈ D} = c ∈
R. Clearly, since Φ′ is is continuous and positive, limξ→c Φ′(ξ) =∞, implying limτ→−∞(Φ−1)′(τ) =
0 and (i) easily follows.

Ad (ii): Without loss of generality, assume ess supτ∈R θ(τ) = 1. Then supm∈Z am = ∞ or
limm→−∞ am =∞ easily imply that a finite upper bound for

∑
m∈Z |gm|2 =

∑
m∈Z am|θ(Φ(·)−m)|2

cannot be found. Let a := supm∈Z am <∞. For every ε > 0, there is mε ∈ Z, such that∑
m≤(k−mε)

am|θ(τ −m)|2 ≤ C2
0

∑
m≤(k−mε)

a(1 + |τ −m|)−2p0 ≤ ε/2, for almost every τ ≥ k, k ∈ Z.

If lim supm→∞ am = 0, then there is a kε ∈ Z, such that sup
m>(kε−mε)

am ≤ ε/(2B), where the constant

B is defined as

B := ess sup
τ∈R

∑
m∈Z
|θ(τ −m)|2 ≤ ess sup

τ∈R
C2

0

∑
m∈Z

(1 + |τ −m|)−2p0 <∞.

Together, we obtain ∑
m∈Z

am|θ(τ −m)|2 ≤ ε, for almost every τ ≥ kε.

Since ε > 0 is arbitrary, the desired lower bound Ã cannot exist. lim supm→−∞ am 6= 0 is proven
by the same steps.

Ad (iii): We show that under the assumptions of (iii), w /∈ L∞(R) implies θ ≡ 0, which
contradicts the assumption that θ is nonzero. Begin by noting that |gm| ≤ C(1 + |(·)−Φ−1(m)|)−p
is equivalent to

θ ≤ C
√
am(1 + |Φ−1(·+m)− Φ−1(m)|)p

, almost everywhere.

Moreover, for all τ0 ∈ R,

Φ−1(τ0 +m)− Φ−1(m) =

∫ τ0

0

w(m+ τ) dτ ≥
∫ τ0

0

w(m)

v(−τ)
dτ,

16



where we used v-moderateness of w. If τ ≥ τ1 > 0, then with Cτ1 :=
∫ τ1

0
1

v(−τ)dτ , we obtain by

positivity of v that

θ(τ) ≤ C
√
am(1 + |Φ−1(τ +m)− Φ−1(m)|)p

≤ C
√
am(1 + Cτ1w(m)|)p

, for almost all τ ≥ τ1. (24)

Now, if w /∈ L∞(R), then either limm→∞ w(m) = ∞ or limm→−∞ w(m) = ∞, by continuity of
w. For the right hand side of (24) to be bounded below, this implies either limm→∞ am = 0 or
limm→−∞ am = 0, which is prohibited by (ii). Since τ1 > 0 was arbitrary, we obtain that necessarily
θ(τ) = 0 for almost every τ > 0. An analogous argument shows that θ(τ) = 0 for almost every
τ < 0. Therefore, θ ≡ 0, completing the proof by contradiction.

Considering Proposition 4.5, a quick glance at Examples 3.6–3.9 shows that the requirements
of [19, Theorem 3.4] are highly undesirable for warped filter banks. Instead, we establish a decay
condition on θ that is only a mild restriction compared to the standard condition θ ∈ L2√

v
(R). This

condition ensures the Bessel property and, when complemented by sufficiently small decimation
factors, even the frame property. The given result is of central interest, as it shows that warped
filter banks also admit the construction of frames for many prototype filters θ with full support.

Theorem 4.6. Let Φ : D → R be a warping function with θ ∈ L2√
v
(R), fix an arbitrary ε > 0 and

let w1, w2 denote the following weights

w1 = (1 + | · |)1+ε and w2 = (1 + |V (0, ·)|)1+ε,

where V is as defined in (23). If

θ ∈ L∞w1
(R) ∩ L∞w2

(R) and am ≤ ã/w(m), for all m ∈ Z and some ã > 0, (25)

then G(Φ, θ,a) is a Bessel sequence. If additionally, there is a constant A1 > 0 such that

0 < A1 ≤
∑
m∈Z
|Tmθ|2 almost everywhere,

then there is a constant ã0 > 0 such that G(Φ, θ,a) is a frame, whenever am ≤ ã0/w(m), for all
m ∈ Z.

We want to highlight that, since necessarily θ ∈ L2√
v
(R), the decay condition in (25) is only

slightly stronger than requiring the appropriate integrability in addition to square-integrability.
To see this, note that L∞w2

(R) ⊂ L2√
v
(R) ∩ L1

v(R), but the change of variable t = V (0, τ), with

(V (0, ·))′(τ) = v(τ) by definition,∫
IV

(1 + |t|) dt =

∫
R
v(τ)(1 + |V (0, τ)|) dτ,

where IV := {t ∈ R : ∃ τ ∈ R, such that V (0, τ) = t}. Straightforward calculations using the
v-moderateness of w = (Φ−1)′ show that IV is an interval and if inf(D) = −∞ (sup(D) = ∞),
then inf(IV ) = −∞ (sup(IV ) = ∞). Hence, if IV is unbounded, which is usually the case, then
L∞(1+|V (0,·)|)(R) 6⊂ L1

v(R).
Before we proceed to prove Theorem 4.6, we require two auxiliary results.
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Lemma 4.7. Let Φ : D → R be a warping function such that w is v-moderate. There is a bijective,
increasing function Av : R→ R, such that Av(0) = 0 and for all c ∈ R+, we have

∣∣Φ−1(τ1)− Φ−1(τ0)
∣∣ ≥ cw(τ0) =⇒ |τ1 − τ0| ≥

{
|A−1
v (c)| if τ1 ≥ τ0

|A−1
v (−c)| else

, for all τ0, τ1 ∈ R.

Proof. If τ1 ≥ τ0, then the assumptions yield

cw(τ0) ≤ Φ−1(τ1)− Φ−1(τ0) =

∫ τ1

τ0

w(τ)dτ ≤ w(τ0)(τ1 − τ0) sup
τ∈[0,τ1−τ0]

v(τ).

Analogous, we obtain for τ1 < τ0 that cw(τ0) ≤ w(τ0)(τ0 − τ1) supτ∈[τ1−τ0,0] v(τ).
The function Av : R → R, τ 7→ τ supτ0∈[τ,0]∪[0,τ ] v(τ0) is continuous and strictly increasing and

thus invertible. Moreover, the above derivations show that, for all τ0, τ1 ∈ R,

c ≤ sgn(τ1 − τ0)Av(τ1 − τ0),

as desired.

Lemma 4.7 allows us to derive the following result which will be crucial for proving Theorem
4.6.

Lemma 4.8. For a given warped filter bank G(Φ, θ,a), with a sequence a = (am)m∈Z of decimation
factors, define

P(ξ) := PΦ,θ,a(ξ) :=
∑
m∈Z

|θ(Φ(ξ)−m)| ·
∑

k∈Z\{0}
ξ+ka−1

m ∈D

∣∣θ(Φ(ξ + ka−1
m )−m)

∣∣
 , for all ξ ∈ D. (26)

If θ ∈ L∞w1
(R) ∩ L∞w2

(R), with w1, w2 as in Theorem 4.6, and am ≤ ã/w(m), for all m ∈ Z and
some ã > 0, then

ess sup
ξ∈D

P(ξ) <∞ and ess sup
ξ∈D

P(ξ)
ã→0−→ 0.

Proof. In our estimation, we use Hurwitz’ zeta function [50] , ζ(q, s) =
∑
k∈N0

(q+k)−s, repeatedly.
The function ζ(s, q) is finite for all q > 0, s > 1 and tends towards zero for s fixed and q → ∞ or
vice versa. It can be estimated by

ζ(q, s) = q−s +
∑
k∈N

(q + k)−s < q−s +

∫
R+

(q + t)−s dt = q−s + (s− 1)−1q1−s (27)
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and similarly ζ(q, s) > (s− 1)−1q1−s. Note that v-moderateness of w implies, for t ∈ D,

∣∣t− Φ−1(m)
∣∣ =

∣∣Φ−1(Φ(t))− Φ−1(m)
∣∣ =

∣∣∣∣∣
∫ Φ(t)

m

w(τ) dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ Φ(t)−m

0

w(τ +m) dτ

∣∣∣∣∣
≤ w(m)

∣∣∣∣∣
∫ Φ(t)−m

0

v(τ) dτ

∣∣∣∣∣ = w(m)|V (0,Φ(t)−m)|. (28)

Moreover, with C1 := ‖θ‖L∞w1
(R) <∞,

ess sup
τ∈R

∑
m∈Z
|Tmθ(τ)| ≤ 2C1

∑
m∈N0

1

(1 +m)1+ε
= 2C1ζ(1, 1 + ε) =: B̃ < 2C1(1 + ε−1) <∞. (29)

We proceed to estimate the inner sum in (26). To that end, define

Pm :=
∑

k∈Z\{0}
ξ+ka−1

m ∈D

∣∣θ(Φ(·+ ka−1
m )−m)

∣∣ , for all m ∈ Z.

Now, assume that θ ∈ L∞w2
(R) with C2 := ‖θ‖L∞w2

(R) > 0. Insert into the definition of Pm to see

that

Pm(ξ) ≤ C2

∑
k∈Z\{0}
ξ+ka−1

m ∈D

∣∣(1 + |V (0,Φ(ξ + ka−1
m )−m))|)−1−ε∣∣

≤ C2

∑
k∈Z\{0}

(
1 +

∣∣∣∣ξ + ka−1
m − Φ−1(m)

w(m)

∣∣∣∣)−1−ε

,

for almost every ξ ∈ D. Here, we used (28) with t = ξ + ka−1
m to obtain the second inequality.

For any pair (ξ,m), there is a unique k(ξ,m) ∈ Z such that ξ+k(ξ,m)a
−1
m −Φ−1(m) ∈ [−(2am)−1, (2am)−1).

Let
Mξ := {m ∈ Z : k(ξ,m) = 0} and M†ξ := Z \Mξ.

First assume that m ∈ Mξ, i.e. ξ − Φ−1(m) ∈ [−(2am)−1, (2am)−1). We can split the sum by the
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sign of k to obtain

∑
k∈Z\{0}

(
1 +

∣∣∣∣ξ + ka−1
m − Φ−1(m)

w(m)

∣∣∣∣)−1−ε

≤
∑
k∈N0

(
1 +

∣∣∣∣ (2am)−1 + ka−1
m

w(m)

∣∣∣∣)−1−ε

+
∑
k∈N0

(
1 +

∣∣∣∣− (2am)−1 + ka−1
m

w(m)

∣∣∣∣)−1−ε

= 2
∑
k∈N0

(
w(m) + (2am)−1 + ka−1

m

w(m)

)−1−ε

= (∗).

If am ≤ ã/w(m), then |(2am)−1 + ka−1
m | ≥ |(1/2 + k)w(m)/ã| and

(∗) ≤ 2
∑
k∈N0

(
ã+ 1/2 + k

ã

)−1−ε

= 2ã1+ε
∑
k∈N0

(ã+ 1/2 + k)
−1−ε

= 2ã1+εζ(ã+ 1/2, 1 + ε).

Consequently, we obtain that

Pm(ξ) ≤ 2C2ã
1+εζ(ã+ 1/2, 1 + ε),

for almost every ξ ∈ D. Now, if m ∈M†ξ , then a similar estimation yields

Pm(ξ) ≤
∣∣θ(Φ(ξ + k(ξ,m)a

−1
m )−m)

∣∣+ C2

∑
k∈Z\{0,k(ξ,m)}

(
1 +

∣∣∣∣ξ + ka−1
m − Φ−1(m)

w(m)

∣∣∣∣)−1−ε

≤ C2 + 2C2ã
1+εζ(ã+ 1/2, 1 + ε),

almost everywhere. These estimates can now be inserted into the expression (26) for P:

P(ξ) =
∑
m∈Z
|θ(Φ(ξ)−m)| · Pm(ξ)

≤ C2

∑
m∈M†ξ

|θ(Φ(ξ)−m)|+ 2C2ã
1+εζ(ã+ 1/2, 1 + ε) ·

∑
m∈Z
|θ(Φ(ξ)−m)|,

(30)

for almost every ξ ∈ D. Additionally, by (27),

ã1+εζ(ã+ 1/2, 1 + ε) <

(
1 +

ã+ 1/2

ε

)(
ã

ã+ 1/2

)1+ε

.

Applying (29) to estimate both terms, yields

ess sup
ξ∈D

P(ξ) ≤ B̃C2 ·
(
1 + 2ã1+εζ(ã+ 1/2, 1 + ε)

)
< 2C1C2(1 + ε−1)

(
1 + 2

(
1 +

ã+ 1/2

ε

)(
ã

ã+ 1/2

)1+ε
)
<∞.
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For the second assertion, we have to show convergence of the essential supremum to 0 for ã→ 0. By
definition, m ∈ M†ξ implies |ξ − Φ−1(m)| ≥ (2am)−1 ≥ w(m)(2ã)−1. Hence, we can apply Lemma

4.7, with τ0 = m, τ1 = Φ(ξ) and c = (2ã)−1 to obtain

|Φ(ξ)−m| ≥

{
|A−1
v (1/(2ã)) | if Φ(ξ)−m ≥ 0,

|A−1
v (−1/(2ã)) | else.

We can rewrite, with m− := maxM†ξ ∩ (−∞,Φ(ξ)),m+ := minM†ξ ∩ (Φ(ξ),∞),∑
m∈M†ξ

|θ(Φ(ξ)−m)| ≤
∑
k∈N0

|θ(Φ(ξ)−m− + k)|+
∑
k∈N0

|θ(Φ(ξ)−m+ − k)|

≤ C1

(∑
k∈N0

1(
1 + |A−1

v (1/(2ã)) |+ k
)1+ε +

∑
k∈N0

1(
1 + |A−1

v (−1/(2ã)) |+ k
)1+ε

)

= C1 ·
1∑
j=0

ζ
(
1 + |A−1

v

(
(−1)j/(2ã)

)
|, 1 + ε

)
.

All in all, we obtain for P the estimate

PΦ,θ,a(ξ)

≤ C1C2 ·
1∑
j=0

ζ
(
1 + |A−1

v

(
(−1)j/(2ã)

)
|, 1 + ε

)
+ 2B̃C2ã

1+εζ(ã+ 1/2, 1 + ε)

< C1C2

4(1 + ε−1)

(
1 +

ã+ 1/2

ε

)(
ã

ã+ 1/2

)1+ε

+

1∑
j=0

1 + ε−1(1 + |A−1
v

(
(−1)j/(2ã)

)
|)

(1 + |A−1
v ((−1)j/(2ã)) |)1+ε

 ,

(31)

almost everywhere. Since A−1
v (τ)

τ→±∞−→ ∞, we see that

ess sup
ξ∈D

PΦ,θ,a(ξ)
ã→0−→ 0,

as desired, finishing the proof.

The last term on the right hand side of (31) depends heavily on the moderating weight v through
the function A−1

v and without further specifying v, a useful estimate for A−1
v is out of reach. For

v(τ) = eτ , cf. Example 3.6, we have Av(τ) = τ max{1, eτ}. Thus, on R+, A−1
v equals the product

logarithm, such that the right hand side of (31) will decay very slowly for ã → 0. However, it
decays quickly for increasing ε and for our experiments, performed with compactly supported or
exponentially decaying θ, we have never observed any significant dependence of the choice of ã
on v, even if v is chosen to be (asymptotically) optimal, compare the results presented in Section
5.1, in particular the frame bound ratios reported in Table 1. On the other hand, the estimate
(31) may be rather coarse. For a smooth bell function θ, e.g. a Gaussian, even the base estimates
θ ≤ C0(1 + | · |)−1−ε and θ ≤ C1(1 + |V (0, ·)|)−1−ε do not allow the simultaneous choice of small
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constants C0, C1 and a large decay rate ε.
With Lemma 4.8 in place, proving Theorem 4.6 only requires a few simple steps.

Proof of Theorem 4.6. We will show that, with suitable choices of ã, the conditions of Theorem 4.6
enable the application of [41, Proposition 3.7], which, adapted to our setting, states that

B := ess sup
ξ∈D

[∑
m∈Z

∑
l∈Z

1

am
|gm(ξ)gm(ξ − l/am)|

]
<∞, (32)

is sufficient for G(Φ, θ,a) to be a Bessel sequence with bound B. If additionally

A := ess inf
ξ∈D

∑
m∈Z

1

am

|gm(ξ)|2 −
∑
l 6=0

|gm(ξ)gm(ξ − l/am)|

 > 0, (33)

then G(Φ, θ,a) constitutes a frame for L2,F (D) with lower frame bound A.
The main observation is the following: For any given warped filter bank G(Φ, θ,a), we have∑

m∈Z
a−1
m |gm(ξ)|2 ±

∑
m∈Z

∑
k∈Z\{0}

a−1
m |gm(ξ)gm(ξ + ka−1

m )|

=
∑
m∈Z
|θ(Φ(ξ)−m)|2 ±

∑
m∈Z

|θ(Φ(ξ)−m)| ·
∑

k∈Z\{0}
ξ+ka−1

m ∈D

|θ(Φ(ξ + ka−1
m )−m)|


=
∑
m∈Z
|θ(Φ(ξ)−m)|2 ±PΦ,θ,a(ξ), for almost every ξ ∈ D.

By Lemma 4.8, ess supξ∈D PΦ,θ,a(ξ) <∞. Moreover, since θ ∈ L∞w1
(R), we obtain the estimate

ess sup
τ∈R

∑
m∈Z
|Tmθ(τ)| ≤ B̃ <∞

as per (29). In total, with B as in (32),

B = ess sup
ξ∈D

(∑
m∈Z
|θ(Φ(ξ)−m)|2 + PΦ,θ,a(ξ)

)
≤ B̃2 + ess sup

ξ∈D
PΦ,θ,a(ξ) <∞,

and G(Φ, θ,a) is a Bessel sequence by [41, Proposition 3.7]. Similarly, with A as in (33),

A = ess inf
ξ∈D

(∑
m∈Z
|θ(Φ(ξ)−m)|2 −PΦ,θ,a(ξ)

)
≥ A1 − ess sup

ξ∈D
PΦ,θ,a(ξ).

By Lemma 4.8, there is a constant ã0 > 0, such that am ≤ ã0/w(m), for all m ∈ Z, implies

ess sup
ξ∈D

PΦ,θ,a(ξ) < A1.
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Thus, by [41, Proposition 3.7], we have that G(Φ, θ,a) constitutes a frame.

Theorem 4.6 is extremely useful for proving (a) the existence of a safe region in which decimation
factors can be chosen freely and (b) that compact support of the prototype θ is not a necessity for
obtaining warped filter bank frames.

4.1. Warped filter bank frames with θ ∈ L2√
w

(R)

When going through the results just presented, we regularly use the moderateness of w = (Φ−1)′

to obtain estimates w(τ +m) ≤ w(m)v(τ). Clearly, we can exchange the roles of w and v, to obtain
estimates in terms of v(m) instead of w(m). With this simple change, we can recover all the
presented results in the setting where θ ∈ L2√

w
(R) and natural decimation factors take the form

am = ã/v(m), for some ã > 0. Adapting the proofs amounts to simply exchanging the roles of
w and v. Furthermore, V (τ0, τ1) must be exchanged for W (τ0, τ1) := Φ−1(τ1) − Φ−1(τ0), in the
statements and proofs of Corollary 4.4, Lemma 4.8 and Theorem 4.6.

4.2. On tight warped filter bank frames

Using the framework of warped filter banks, tight frames are easily realized via Theorem 4.3(ii).
This is one of the major assets of the presented construction. Tight frames are important for
various reasons, the most important surely being that they provide a perfect reconstruction system
in which the synthesis frame equals the analysis system up to a constant. Hence, there is no need
for computing and/or storing a dual frame, which might be highly inefficient. Furthermore, the
usage of tight frames guarantees that the synthesis shares the properties of the analysis, e.g. in
terms of time-frequency localization.

Note that Theorem 4.3 implies that, if the decimation factors a are majorized by a set of natural
decimation factors, then any tight warped filter bank frame G(Φ, θ,a) must necessarily satisfy, for
some C > 0, ∑

m∈Z
|Tmθ|2 = C, a.e. (34)

Moreover, under the conditions of Theorem 4.3(ii), Equation (34) is even equivalent to G(Φ, θ,a)
forming a tight frame. Therefore, θ that satisfy (34) are the optimal starting point when aiming to
construct warped filter bank frames with small frame bound ratio, i.e. B/A ≈ 1.

Although surely not the only methods for obtaining functions satisfying (34), we highlight here
two classical methods that provide both compact support, which is required to apply Theorem
4.3(ii), and a prescribed smoothness: B-splines [17] and windows constructed as a superposition
of truncated cosine waves of different frequency [49]. The second class contains classical window
functions such as the Hann, Hamming and Blackman windows. We now recall a procedure to
construct such functions that also satisfy (34). The method has previously been reported and
proven as [57, Theorem 1]:

Let K ∈ N and ck ∈ R for k ∈ {0, 1, . . . ,K}, and define

ϑ(τ) :=

K∑
k=0

ck cos(2πkτ)1[−1/2,1/2). (35)
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Then for any integer R > 2K

∑
m∈Z

∣∣∣∣ϑ(τ −mR
)∣∣∣∣2 = Rc20 +

R

2

K∑
k=1

c2k, ∀τ ∈ R; (36)

i.e. the sum of squares of a system of regular translates (Tmθ)m∈Z, with θ = ϑ(·/R), is constant.
The construction above can be combined with Theorem 4.3(ii) to easily construct tight frames

by choosing the decimation factors am to satisfy

a−1
m ≥ Φ−1(m+R/2)− Φ−1(m−R/2). (37)

In the following, we will demonstrate this for some of the examples given in Section 3.
For the purpose of all the following examples, we choose ϑ according to (35) with K = 1 and

c0 = c1 = 1/2, i.e. we can choose R ≥ 3. This function is often called the Hann or raised cosine
window. The Hann window is among the most popular finitely supported Gabor windows or filters
for time-frequency signal analysis.

Example 4.9 (Φ(ξ) = sgn(ξ) log(1 + |ξ|)). For this choice of Φ, (37) takes the form

a−1
m ≥ sgn(m+R/2)(e|m+R/2| − 1)− sgn(m−R/2)(e|m−R/2| − 1),

or equivalently

a−1
m ≥

{
(e|m|+R/2 − 1)− (e|m|−R/2 − 1) = e|m|(eR/2 − e−R/2) for |m| ≥ R/2,
(em+R/2 − 1) + (e−m+R/2 − 1) = eR/2(e|m| + e−|m|)− 2 else,

where the latter case concerns the filters where supp(Tmθ) is not contained in either [0,∞) or
(−∞, 0]. We see that in both cases, a−1

m is majorized by e|m|, up to a constant depending solely on
R. If we set R = 3, then a tight frame is obtained by choosing

am =


e−|m|(e3/2 − e−3/2)−1 ≥ 1

4.26e|m|
for |m| ≥ 2,

(e3/2(e1 + e−1)− 2)−1 > 1
11.84 for |m| = 1,

(2e3/2 − 2)−1 > 1
6.97 for m = 0.

On the other hand, Corollary 4.4 yields ãw = (2e3/2 − 2)−1 and w(m) = v(m) = e|m|, i.e.
am = 2e−|m|(e3/2 − 1)−1 for all m ∈ Z, which is slightly more conservative.

Example 4.10 (Φα(ξ) = sgn(ξ)((1 + |ξ|)1−α − 1)). Let p := 1/(1 − α) ∈ N. Then (37) can be
rewritten as

a−1
m ≥

{
(1 + |m|+R/2)p − (1 + |m| −R/2|)p for |m| ≥ R/2,
(1 +R/2 +m)p + (1 +R/2−m)p − 2 else.

If α = 1/2, i.e. p = 2, and R = 3, evaluation of the above conditions yields a tight warped filter
bank with

am =


1

6+6|m| for |m| ≥ 2,
2
25 for |m| = 1,
2
21 for m = 0.
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In this setting, Corollary 4.4 yields ãw = 4
21 and w(m) = 2 + 2|m|, see also Example 3.9.

Example 4.11 (Φ(ξ) = tan(ξ)). With w and v as in Proposition 3.11(v), Corollary 4.4 yields ãw =
(R3/6 + 2R− 4)−1 and, with R = 3, the following set of almost optimal natural decimation factors

am = ãw/w(m) =
2 + 2m2

13
.

5. Warped filter banks for digital signals

In the following, we consider sequences x ∈ `2(Z), interpreted as the samples of signals sampled
at frequency ξs Hz. The discrete time Fourier transform (DTFT) and its inverse are denoted in the
same fashion as the continuous Fourier transform before, i.e. x̂(ξ) := Fx(ξ) =

∑
Z x(l)e−2πilξ/ξs .

Note that x ∈ `2(Z) implies x̂ ∈ L2(T), therefore the inverse DTFT maps L2(T), with T =
R/ξsZ, onto `2(Z) by y̌(l) = F−1y(l) = ξ−1

s

∫
T y(ξ)e2πilξ/ξs dξ. Discrete translation and modulation

operators are given as usual. Finally, let M := {0, . . . ,M − 1}.
The material in this section summarizes work previously presented in [39], with the goal of

highlighting the application of the presented methods in digital signal analysis. We take this
chance to update and, in places, clarify these previous results, as well as bringing the notation more
in line with our other work on warped filter banks.

A (M channel, analysis) filter bank (gm,n)m∈M,n∈Z, generated by (gm)m∈M ⊂ L2(T) and
(am)m∈M ⊂ N is the set of finite energy sequences

gm,n := Tnam |gm, for all m ∈M,n ∈ Z. (38)

Filter bank frames on `2(Z) are defined analogous to those on L2,F (D).
We construct warped filters gm ∈ L2(T) by restricting the warping function Φ to Iξs,D :=

D ∩ (−ξs/2, ξs/2], i.e. we construct filter banks for sequences x ∈ `2(Z) with supp(x̂) ⊂ Iξs,D. The
interval (−ξs/2, ξs/2] is interpreted as one period of the torus T.

Although not strictly necessary, we will assume that θ ∈ C with supp(θ) ⊆ [c, d] ⊂ Φ(Iξs,D). Let

Mmax = max{m ∈ Z : Φ−1(m+ d) ≤ sup(Iξs,D)}
Mmin = min{m ∈ Z : Φ−1(m+ c) > inf(Iξs,D)},

and define the frequency responses

gm(ξ) :=
√
am(Tmθ) ◦ Φ(ξ), for all ξ ∈ T, m ∈ {Mmin, . . . ,Mmax}, (39)

where the constants am ∈ N are free parameters that are only applied once the decimation fac-
tors have been selected. The support restriction of θ ensures that supp(gm) ⊆ Iξs,D. Clearly, if
Iξs,D is a strict subset of (−ξs/2, ξs/2], then either Mmin or Mmax is not finite. Hence, for the
construction of a filter bank with a finite number of channels, we only consider the filters gm for
m ∈ {mmin, . . . ,mmax}, where −∞ < mmin,mmax <∞ satisfy mmin ≥Mmin and mmax ≤Mmax.

In order to cover the full frequency range Iξs,D, we need to design additional band-pass filters.
We distinguish two cases:
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(i) If Iξs,D = (−ξs/2, ξs/2], then

gmmax+1(ξ) :=

ammax+1

∑
m∈Z\[mmin,mmax]

|(Tmθ) ◦ Φ(ξ)|2
1/2

, for all ξ ∈ T. (40)

(ii) If Iξs,D ( (−ξs/2, ξs/2], then

gmmin−1(ξ) :=

(
ammin−1

∑
m<mmin

|(Tmθ) ◦ Φ(ξ)|2
)1/2

and

gmmax+1(ξ) :=

(
ammax+1

∑
m>mmax

|(Tmθ) ◦ Φ(ξ)|2
)1/2

, for all ξ ∈ Iξs,D,

(41)

and 0 elsewhere. Once again ammin−1, ammax+1 ∈ N can be selected freely.
The final filter bank contains M := mmax − mmin + 1 filters (or M := mmax − mmin + 2 if

Iξs,D ( (−ξs/2, ξs/2]) and after shifting the index set by ms := −mmin (or ms := −mmin − 1),
we obtain the M -channel, discrete warped filter bank (gm, am)m∈M . Since the decimation factors
am ∈ N only act as a normalization factor in the definition of the gm, they can easily be chosen (and
varied) a posteriori. For some exemplary frequency responses derived from the warping functions
introduced in Examples 3.6–3.9, see Figure 2a. Note that Φsqrt corresponds to Example 3.9 with
α = 1/2. In Figure 2b, we show time-frequency plots of a test signal with respect to the same
warping functions.

Necessary and sufficient frame conditions for discrete warped filter banks are analogous to the
continuous case. In particular,

0 < A/ξs ≤
∑
m∈Z
|(Tmθ) ◦ Φ(ξ)|2 =

∑
m∈M

a−1
m |gm(ξ)|2 ≤ B/ξs <∞, for all ξ ∈ Iξs,D, (42)

is a necessary condition for (gm, am)m∈M to constitute a frame with frame bounds A,B.
Recall that we assume supp(θ) ⊆ [c, d] and define Mbp = {M − 1}, if Iξs,D = (−ξs/2, ξs/2] and

Mbp = {0,M − 1} otherwise. For all m ∈M \Mbp choose the decimation factors am such that

ξs/am ≥ Φ−1(d+m+ms)− Φ−1(c+m+ms). (43)

If additionally

ξs/aM−1 ≥ Φ−1(d+ms) + ξs − Φ−1(c+M +ms − 1), if Iξs,D = (−ξs/2, ξs/2], or

ξs/a0 ≥ Φ−1(d+ms)− inf(Iξs,D) and ξs/aM−1 ≥ sup(Iξs,D)− Φ−1(c+M +ms − 1),
(44)

then (42) is equivalent to the frame property (with bounds A,B) and a dual filter bank is obtained
analogous to Theorem 4.3(ii).

The redundancy of a filter bank with full frequency range (−ξs/2, ξs/2] is given by
∑
m∈M a−1

m .

Since warped filter banks only cover Iξs,D, the redundancy of (gm,n)m∈M,n∈Z is more accurately

represented by Cred = ξs
µ(Iξs,D) ·

∑
m∈M a−1

m . Selecting minimal decimation factors according to (43)

and (44) results in Cred ≈ d − c, i.e. the redundancy depends solely on the amount of overlap
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(a) Frequency responses of warped filters (with low-
pass filter (40)). The visualization was restricted to
the frequency range 0 Hz–1.2 kHz.
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(b) Time-frequency plots of a short piano and vi-
olin excerpt. Color indicates intensity is in dB, the
colorbar is valid for all plots.

Figure 2: Warped filter bank examples: (top-left) Φlog(ξ) = 10 log(ξ), (top-right) Φerb(ξ) = 9.265 sgn(ξ) log(1 +

|ξ|/228.8), (bottom-left) Φsqrt(ξ) = sgn(ξ)(
√

1 + |ξ| − 1), (bottom-right) Φlin(ξ) = ξ/100. Placement applies to
subfigures (a) and (b). For subfigure (b), warping functions were scaled using (8) with a = 4, to increase the the
filter density.

between the translates Tmθ.
If reduced redundancy is desired, we have obtained favorable results by reducing am, for m ∈

M \Mbp, by roughly a constant factor β ∈ (0, 1), i.e. choose am by rounding βξs(Φ
−1(d + m +

ms)−Φ−1(c+m+ms))
−1 to the next integer, instead of using (43). This scheme is inspired by the

results of the previous section that suggest to choose am that are majorized by (and rather close to)
a set of natural decimation factors. The bandpass filters gm, m ∈Mbp may have large plateaus and
in that case, reducing the limits in (44) significantly usually leads to quickly deteriorating frame
bounds. Therefore, am for m ∈Mbp have to be tuned more carefully.

To ensure the frame property for (gm, am)m∈M (and obtain suboptimal frame bounds), one can
verify that

∞ >
∑
m∈M

a−1
m |gm(ξ)|2 >

∑
m∈M

(
a−1
m |gm(ξ)|

am−1∑
k=1

|Tkξs/amgm(ξ)|

)
=: A(ξ) > 0, almost everywhere.

(45)
The condition above is simply the application of [41, Proposition 3.7] to our setting. Since A
depends continuously on θ, this shows that discrete warped filter bank frames can be obtained,
even if the decimation regime given by (43) and (44) is not strictly satisfied.
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Table 1: Frame bound ratios of warped filter banks from Figure 2a with varying redundancy. Columns correspond
to warped filter banks with approximately equal redundancy. Numbers in parentheses are estimates obtained by
considering the sum and difference, respectively, of the terms in (45).

Cred(≈) 3 2 1.5 1.25 1.125
Φlin 1.000 1.220 (1.234) 1.961 (1.982) 3.880 (4.759) 6.868 (10.042)
Φsqrt 1.003 1.237 (1.243) 1.980 (1.997) 3.938 (4.894) 7.315 (11.135)
Φerb 1.000 1.240 (1.249) 1.970 (2.134) 3.860 (5.023) 7.122 (11.323)
Φlog 1.014 1.240 (1.249) 1.973 (2.125) 3.876 (5.019) 7.159 (11.323)

5.1. Experiment: Frame bound ratio and estimates

The results in this section, as well as Figure 2, can be reproduced using the code provided at
http://ltfat.github.io/notes/049/.

To illustrate that the redundancy can be significantly reduced we provide numerically computed
frame bound ratios in Table 1, for different warped filter banks with varying redundancy. Addition-
ally, estimates for the frame bound ratio obtained in the style of (45) are provided in parentheses.
The filter banks were obtained from a Hann prototype, see Section 4.2, with R = 3 such that∑
m |Tmθ|2 ≡ C. The first column represents filter banks with decimation factors minimizing (43)

and (44); for the remaining redundancies, decimation factors were chosen according to the reduced
redundancy scheme with some β < 1. Even for redundancy as low as 9/8, the frame bound ratio1 is
significantly smaller than 10. Considering the estimate in the proof of Lemma 4.8, it is noteworthy
that, for fixed redundancy, the dependence of the frame bound ratio on the warping function Φ
seems to be quite limited.

Complementing the numerically obtained ratios in Table 1, we computed the estimates used to
prove Theorem 4.6, with Φlog(ξ) = 10 log(ξ) and θ = ϑ(·/3) with the Hann window ϑ as in (35)
with c0 = c1 = 1/2. Hence,

∑
m |Tmθ|2 = 1.125 by (36). Since θ is compactly supported, ε in

the estimate (31) is arbitrary, but different choices lead to a different constant C1C2. We only
considered the setting am = ãw/w(m) with ãw as in Corollary 4.4, where we know that in fact
PΦ,θ,a ≡ 0, see (26) for the definition of PΦ,θ,a. For ε = 1, 2, 3, 4, 5, Equation (31) yields the upper
bounds 10.2, 6.5, 6.6, 8.2, 11.6 (rounded down to the first decimal) for PΦ,θ,a, such that Theorem
4.6 would not be sufficient to confirm the frame property, although the considered system is even
tight. It might be interesting to note that, for small ε, the dominant quantity in (31) is the first
term in parentheses, while for larger ε, the constant C1C2 is dominant. Interestingly, the term
depending on A−1

v had relatively minor contribution in our experiments.

6. Conclusion and Outlook

In this contribution, we have introduced a novel, flexible family of structured time-frequency
filter banks. These warped filter banks are able to recreate or imitate important classical time-
frequency representations, while providing additional design freedom. Warped filter banks allow

1In fact, due to a bug in older versions of the LTFAT Toolbox (ltfat.github.io) used for the frame bound
calculations, the frame bound ratios reported in [39] are too large. In Table 1, corrected values are shown alongside
ratios for lower redundancies not tested before.
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for intuitive handling and the application of important results from the theory of generalized-shift
invariant frames. In particular, the construction of tight frames of bandlimited filters reduces
to the selection of a compactly supported prototype function whose integer translates satisfy a
simple summation condition and sufficiently small decimation factors am. Moreover, the warping
construction induces a natural choice of decimation factors that further simplifies the design of
warped filter bank frames. With several examples, we have illustrated not only the flexibility of
our method when selecting a non-linear frequency scale, but also the ease with which tight frames
or snug frames can be constructed.

The complementary manuscript [40] discusses warped time-frequency representations in the
context of continuous frames, determines the associated coorbit spaces and the warped time-
frequency representations’ sampling properties in the context of atomic decompositions and Banach
frames [27, 28]. Future work will continue to explore practical applications of warped time-frequency
representations and their finite dimensional equivalents on CL, as well as extending the warping
method to multidimensional signals.
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Sitzungsber.d.österr. Akad.Wiss., 188.

[26] H. G. Feichtinger and M. Fornasier. Flexible Gabor-wavelet atomic decompositions for L2

Sobolev spaces. Ann. Mat. Pura Appl., 185(1):105–131, 2006.
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[61] T. Twaroch and F. Hlawatsch. Modulation and warping operators in joint signal analysis.
In Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale
Analysis, 1998., pages 9–12, Pittsburgh, PA, USA, oct 1998.

[62] P. Vaidyanathan. Multirate Systems And Filter Banks. Electrical engineering. Electronic and
digital design. Prentice Hall, Englewood Cliffs, NJ, USA, 1993.

[63] E. Wesfreid and M. V. Wickerhauser. Adapted local trigonometric transforms and speech
processing. IEEE Trans. Signal Process., 41(12):3596–3600, Dec 1993.

[64] M. V. Wickerhauser. Adapted wavelet analysis from theory to software. IEEE Press, New York,
NY, 1994.

33


