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Towards High Quality Real-Time Signal
Reconstruction from STFT Magnitude

Zdeněk Průša and Pavel Rajmic

Abstract—An efficient algorithm for real-time signal recon-
struction from the magnitude of the short-time Fourier transform
(STFT) is introduced. The proposed approach combines the
strengths of two previously published algorithms: the Real-Time
Phase Gradient Heap Integration (RTPGHI) and the Gnann and
Spiertz’s Real-Time Iterative Spectrogram Inversion with Look-
Ahead (GSRTISI-LA). An extensive comparison with the state-
of-the-art algorithms in a reproducible manner is presented.

Index Terms—Time-frequency, short-time Fourier transform,
STFT, phase reconstruction, real-time, spectrogram

I. INTRODUCTION

In time-frequency signal processing, it is common practice
to work only with the magnitude of the short-time Fourier
transform (STFT) of a signal. However, as soon as reconstruc-
tion is desired, phase information becomes essential. When
the magnitude is modified, it is often sufficient to reuse
the original phase to recover the signal [1]; however, some
spectrogram modifications might invalidate the phase and
the reconstruction procedure can therefore lead to undesired
artifacts [2]. In some applications, the original phase is not
available at all [3]. STFT phase retrieval algorithms alleviate
these problems by allowing complete disposal of the existing
phase and constructing a new valid phase from scratch, taking
the modified magnitude. Unfortunately, currently available
STFT phase retrieval algorithms cannot always be expected
to fulfil all possible requirements at the same time. For
example, some algorithms require the knowledge of the entire
magnitude component and they typically need a large number
of costly iterations to produce a good result [4], [5], [6], [7].
This fact disqualifies them from being used in any real-time
or interactive applications. Algorithms capable of processing
signals in real-time, i.e. in the frame-by-frame manner with
bounded delay [8], [9], [10], [11], tend to produce noticeable
artefacts such as “phasiness” [2], metallic ringing, echo, etc.
for specific classes of audio signals.
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In this work, we propose a real-time phase reconstruction
algorithm which outperforms the state-of-the-art algorithms by
a large margin with respect to both the objective performance
evaluation and the perceived quality of the reconstruction. We
compare our method with the following algorithms, which
can be considered as state-of-the-art algorithms: the Real-Time
Iterative Spectrogram Inversion (RTISI) [12] later improved by
including look-ahead frames [13], [8] (RTISI-LA), and further
modified slightly in line with the work of Gnann and Spiertz
[14], [15], [16] and Gnann [17] (GSRTISI-LA). From the point
of view of this letter, the crucial property of GSRTISI-LA is
that it allows defining an initial phase estimate of the latest
look-ahead frame.

In our previous work [18] we have proposed a non-iterative
algorithm termed Real-Time Phase Gradient Heap Integra-
tion (RTPGHI). RTPGHI is based on the phase–magnitude
relationship, which allows estimating the phase increments
between neighboring STFT coefficients solely from the mag-
nitude. The algorithm requires one look-ahead frame (zero
look-ahead frame version is also available) and, as it turns
out, it is a suitable candidate for providing the initial phase
guess for GSRTISI-LA. In this letter, we combine the good
transient behavior of RTPGHI with the outstanding properties
of GSRTISI-LA to perform a high quality signal reconstruction
from a spectrogram. We aim at a high reconstruction quality,
and therefore we do not include non-iterative algorithms
presented in [9], [10], [11] in our comparison. Although they
are much faster than iterative algorithms, they produce results
of significantly lower quality. The only exception is the Single
Pass Spectrogram Inversion algorithm [9] (SPSI), which we
included in the evaluation as an alternative way of phase
initialization.

In the spirit of reproducible research, the implementation
of the algorithms, audio examples as well as the scripts
reproducing the experiments are available at http://ltfat.github.
io/notes/048. The code depends on our Matlab/GNU Octave
[19] packages LTFAT [20], [21] (version 2.1.3 or above) and
PHASERET (version 0.2.0 or above). Both toolboxes are
open-source and they can be obtained from http://ltfat.github.io
and http://ltfat.github.io/phaseret, respectively.

II. STFT AND ITS INVERSE

The discrete STFT of an input signal f ∈ `2(Z) using the
analysis window g ∈ `2(Z) is defined as

cn(m) =
(
Vgf

)
n
(m) =

∑
l∈Z

f(l + na)g(l)e−i2πml/M , (1)
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where the overline denotes the complex conjugation, M is
a finite number of frequency channels indexed with m =
0, . . . ,M−1, n ∈ Z is the time-frame index and the parameter
a acts as the time step (window shift) in samples. The window
g will further be considered to be real, whole-point symmetric
and compactly supported such that the range of summation
can be reduced to I =

{
−blen (g) /2c, . . . , dlen (g) /2e − 1

}
,

where len (g) is the length of the window support.
The synthesis window g̃ can be obtained as

g̃(l) =
1

M

g(l)∑
n∈Z g(l − na)2

(2)

if the following two conditions are met: the window support
length g is less or equal to the number of frequency channels,
i.e. len (g) ≤ M , and there is a nonempty overlap between
windows, i.e. len (g) > a. Under these assumptions, the sum
in the denominator in (2) is nonzero and a-periodic, g̃ and g
have identical time support and the following relation holds:∑

n∈Z
g(l − na)g̃(l − na) ≡ 1/M. (3)

Please refer to [22], [23], [24], for example, for a thorough
mathematical treatment of the invertibility of the discrete
STFT (also referred to as the Discrete Gabor transform) in
the context of the frame theory. The Gabor frame theory calls
the window computed using (2) the canonical dual window
and the inequality len (g) ≤ M is usually referred to as the
painless condition [25].

Having the synthesis window g̃, the individual time-frames
fn of f can be recovered from the respective coefficients using

fn(l) =

{
g̃(l)

∑M−1
m=0 cn(m)ei2πml/M for l ∈ I,

0 otherwise.
(4)

Consequently, a partial signal reconstruction from time-frames
up to the index N is given by

f̃N (l) =

N∑
n=−∞

fn(l − na) (5)

(cf. overlap-add procedure) and, clearly, the original signal is
formally obtained by taking N =∞.

III. ALGORITHMS

In the following, we will denote the magnitude of the
coefficients of the n-th time-frame as sn(m) = |cn(m)|.
The goal of phase reconstruction algorithms is to estimate the
unknown phase of the coefficients. Let us denote the estimated
phase of cn(m) as φ̃n(m) and the estimated coefficient as
c̃n(m) = sn(m)eiφ̃n(m). In real-time, a particular time frame
can thus be recovered by plugging coefficients c̃n(m) into (4).

A. Overview of RTPGHI

The RTPGHI algorithm [18] is a real-time capable version
of the PGHI algorithm [26]. It is an efficient, non-iterative
algorithm which, by itself, provides results of a good quality.
In particular, in contrast to other algorithms, it does not intro-
duce transient “smearing”. Therefore, one expects RTPGHI to
be a suitable candidate for initializing GSRTISI-LA.

The RTPGHI algorithm is based on the relationship between
the gradients of the phase and the logarithm of the magnitude
of STFT. It employs an adaptive integration scheme to re-
cover the phase. The best performance is achieved using the
Gaussian window, but other windows can be used as well.
The RTPGHI algorithm comes in two versions, RTPGHI(1)
requiring one look-ahead frame and RTPGHI(0) requiring no
look-ahead frame. For details please see the above mentioned
references. Here we only give a conceptual introduction to
RTPGHI(1).

Let us denote slog,n(m) = log(sn(m)). The estimate of the
scaled phase derivative in the frequency direction φ̃ω,n(m)

and in the time direction φ̃t,n(m) expressed solely using the
magnitude can be written as

φ̃ω,n(m) = − γ

2aM

(
slog,n+1(m)− slog,n−1(m)

)
φ̃t,n(m) =

aM

2γ

(
slog,n(m+ 1)− slog,n(m− 1)

)
+

2πam

M

with γ being the “width” parameter of the Gaussian window
[26]. Given the phase estimate φ̃n−1(m), the phase φ̃n(m)
for a particular m is computed using one of the following
equations:

φ̃n(m)← φ̃n−1(m) +
1

2

(
φ̃t,n−1(m) + φ̃t,n(m)

)
, (6)

φ̃n(m)← φ̃n(m− 1) +
1

2

(
φ̃ω,n(m− 1) + φ̃ω,n(m)

)
, (7)

φ̃n(m)← φ̃n(m+ 1)− 1

2

(
φ̃ω,n(m+ 1) + φ̃ω,n(m)

)
. (8)

B. GSRTISI-LA with RTPGHI Initialization

In this section, we present a variant of GSRTISI-LA which
enables using an arbitrary analysis window and allows free
choice of the window overlap length and the number of
frequency channels (as long as the conditions presented in
Sec. II hold). As already mentioned, this proposed approach
employs RTPGHI to find the initial phase estimate.

Assuming RTPGHI(1) is used for initialization, the algo-
rithm processes one time-frame at a time, taking into account
NLA future frames. The NLA− 1 look-ahead frames are used
for the basic version of the GSRTISI-LA algorithm, one addi-
tional look-ahead frame is required for RTPGHI. In addition to
specifying the windows g and g̃, the algorithm requires NLA

additional analysis windows gp, p = 0, . . . , NLA − 1, which
are obtained as

gp(l) =M
g(l)

gsum(l + pa)
, (9)

where

gsum(l) =

NLA−1∑
q=−∞

g(l − qa)g̃(l − qa). (10)

The notation has been simplified in the formal description of
the proposed algorithm RTPGHI(1)+GSRTISI-LA(NLA − 1)
in Alg. 1. The indices in the brackets referring to the vector
entries have been omitted; it is assumed that entire vectors are
employed. The extension to RTPGHI(0)+GSRTISI-LA(NLA)
is straightforward. Even though we operate with infinite sum
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Algorithm 1: RTPGHI(1) + GSRTISI-LA(NLA − 1), n-th
time frame

Input: Number of look-ahead frames NLA, number of
iterations I , magnitude of STFT coefficients
sn, . . . , sn+NLA

Output: Time frame fn.
1 Compute fn+NLA−1 using (4) and coefficients c̃n+NLA−1

estimated using the RTPGHI algorithm (requires
sn+NLA )

2 for i = 1, 2, . . . , I do
3 for p = NLA − 1, . . . , 0 do
4 Compute f̃n+NLA−1 using (5)

5 t←
(
Vgp f̃n+NLA−1

)
n+p

6 cn+p ← sn+p · t/|t| (multiply elementwise)
7 Compute fn+p using (4)
8 end
9 end

limit, in practice, due to the finite support of the windows, at
most NLB =

⌈
len (g) /a

⌉
−1 “look-back” frames is sufficient.

Please note that other types of phase initialization are
possible. The authors of the original version of GSRTISI-LA
proposed to perform simple phase unwrapping [16]. Another
option is to employ algorithms such as SPSI [9] in place of
RTPGHI. However, in our experience neither of these two
approaches brings considerable improvements over the zero
or random phase initialization. Often, using the described
means of phase initialization is even harmful for the overall
performance.

C. Real-time Deadline, Delay and Computational Complexity

The worst-case execution time for a single output frame
must be less than a/fs seconds (time frame shift divided
by the sampling rate in Hz) to meet the real-time deadline
restriction. This fact limits the number of iterations I that can
be performed, nevertheless the actual ceiling for I is entirely
dependent on the computing power of the device. Since the
number of look-ahead frames can be varied, we will further
use the number of per-frame iterations to be able to directly
compare different settings.

The typical delay of the real-time STFT analysis-synthesis
scheme is equal to the length of the window. Each look-ahead
frame of the phase reconstruction algorithm increases the delay
by the window shift a, therefore the overall input–output delay
is
(
len(g) + aNLA

)
/fs seconds.

IV. EXPERIMENTS

In the experiments, we used the SQAM database [27], which
consists of 70 recordings sampled at 44.1 kHz. The first 10
seconds from the first channel of each sound sample were used
in the evaluation. For the performance comparison we used
the normalized mean-squared error between the original STFT

magnitude s and the STFT magnitude of the reconstructed
signal f̃ , previously referred to as spectral convergence [28]

C =

√√√√√√√
∑N−1,M−1
n=0,m=0

(
sn(m)−

∣∣∣∣(Vg f̃)
n
(m)

∣∣∣∣
)2

∑N−1,M−1
n=0,m=0 sn(m)2

, (11)

where N denotes the total number of time frames of the
finite signal. The transform Vg uses the same g, a and M
as the transform used to obtain s. Values in dB are obtained
by computing 20 log10 C. Although not without shortcomings
(see [28] for details) spectral convergence seems to be the
only suitable error measure for evaluating phase reconstruction
algorithms due to its robustness with respect to phase error
irregularity. Due to the irregular behavior of the reconstructed
phase, the recovered waveform is usually very different from
the original signal and the energy of the time domain error
signal is actually comparable to the energy of the signal
itself. Therefore the common time domain error measures like
the signal-to-noise ratio are not applicable. Similarly, in our
experience, automated quality evaluation methods like PEAQ
[29] or PEMO-Q [30] are not suitable neither. They seem to
be mostly “blind” to subtle perceptual errors.

In turns out that a substantial window overlap is necessary in
order to produce the results of high perceptual quality. In our
tests, we use 87.5% window overlap, which results from using
the time step size a = 256 together with the fixed number of
frequency channels M = 2048, and the Gaussian window as
the analysis window truncated at 1% of its height such that
len (g) = 2048. Using an even higher window overlap further
improves the results.

Please note that whenever we refer to the average error in
dB, we mean 20 log10

1
70

∑70
k=1 Ck, where Ck is the error of the

k-th sound excerpt obtained from (11). Averaging errors that
have been already converted to dB (which is occasionally done
in other contributions) produces even better (lower) errors for
all the algorithms.

In the real-time setting, there is room only for a limited
number of iterations, but since the exact number is device
dependent, we will evaluate the performance of the algorithms
for up to 200 per-frame iterations. Fig. 1 shows the average
spectral convergence depending on the number of iterations
and the number of look-ahead frames NLA ∈ {0, 1, 2, 3, 7}.
Actually, NLA = 7 is the maximum number of look-ahead
frames which directly overlap with the currently processed
frame in our setup. Error measures obtained by the non-
iterative RTPGHI algorithm are indicated as horizontal dashed
lines. Note that we are intentionally using a fixed range of
values on the vertical axis. The values of the parameters (g, a
and M ) were chosen the same as that used in [26, Fig. 6a] to
allow a direct comparison. Note that the proposed algorithm
with NLA = 7 (corresponding to 87 ms input–output delay)
outperforms even the best of the offline-only algorithms in
terms of C.

One can observe that the common behavior of the iterative
algorithms is that the average spectral convergence initially
decreases rapidly and from a certain number of iterations
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Fig. 1: Comparison of algorithms.

upwards it starts to level off. This phenomenon could be
explained by the fact that some signals in the database reach
“convergence” at some point while others continue to improve.
From Fig. 1 it is also clear that SPSI [9] initialization does
not bring any significant improvement to the GSRTISI-LA
algorithm. Furthermore, one can observe that the proposed
algorithm clearly outperforms the others whenever two or
more look-ahead frames are used. The scores for individual
files for NLA = 2 (NLA = 1 in case of RTPGHI) and
I = 24 per-frame iterations, as well as the sound examples

−70 −60 −50 −40 −30 −20 −10

RTPGHI(1)

RTISI-LA(2)

GSRTISI-LA(2)

SPSI+
GSRTISI-LA(2)

RTPGHI(1)+
GSRTISI-LA(1)

Spectral convergence [dB]

Fig. 2: Box plot (minimum, first quartile, median, third quar-
tile, maximum) of the errors obtained for NLA = 2 (NLA = 1
in case of RTPGHI) from the 70 sound excerpts.

for all the samples from the SQAM database, can be found
at the accompanying web page http://ltfat.github.io/notes/048.
Additionally, a box plot of the results is depicted in Fig. 2.

When inspecting the results obtained for individual sound
excerpts, one can notice that the iterative algorithms struggle
with reconstructing recordings of percussion instruments such
as claves and castanets and with attacks of transients in
general. Conveniently, the RTPGHI algorithm performs very
well in such cases and the combination with GSRTISI-LA
inherits and even improves upon the behavior as indicated by
the significantly low maximum error in Fig. 2.

A real-time demo allowing one-to-one comparison of the al-
gorithms is available in the PHASERET toolbox, implemented
in demo_blockproc_phaseret2.m.

V. CONCLUSION

It has been shown that the combination of GSRTISI-LA and
RTPGHI outperforms other algorithms and their combinations,
as soon as enough look-ahead frames are used.

Although we have only presented objective error measures
in this letter, in our experience, the quality of the recon-
structed signal reflects the error measure improvement. An
interested reader can verify this claim by listening to the
sound samples found at the accompanying webpage or by
running demo_blockproc_phaseret2.m using his/her
custom audio examples.

In this letter we have assumed that the phase is completely
unknown and only the original clean magnitude is known.
The proposed algorithm can be easily modified to respect
and use coefficients with known phase, but, in the real-
world, noisy or modified magnitudes and phases are usually
observed. Therefore, as the future work, we will focus on
simultaneous magnitude and phase estimation given corrupted,
noisy or incomplete information since the phase-aware signal
processing is currently an active field of research [31], [32],
[33].
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