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The Phase Retrieval Toolbox
Zdeněk Průša

Abstract—A Matlab/GNU Octave toolbox for phase (signal)
reconstruction from the short-time Fourier transform (STFT)
magnitude is presented. The toolbox provides an implementation
of various, conceptually different algorithms ranging from the
well known Griffin-Lim algorithm and its derivatives to the very
recent ones. The list includes real-time capable algorithms which
are also implemented in real-time audio demos running directly
in Matlab/GNU Octave. The toolbox is well-documented, open-
source and it is available under the GPL3 license. In this paper,
we give an overview of the algorithms contained in the toolbox
and discuss their properties.

I. INTRODUCTION

In many STFT-based audio processing applications, the
direct synthesis from the STFT magnitude (or spectrogram)
is unavoidable. Since the missing information is the phase of
the complex coefficients, the task is also often called phase
retrieval or phase reconstruction. To date, many algorithms have
been proposed, but they have mostly been published without
reference implementation or means for reproducing the results.
Moreover, the algorithms have often been formulated and/or
evaluated for a single STFT setting using a fixed window for
the analysis and synthesis. In this paper, we present the Phase
Retrieval Toolbox (PHASERET), which tries to rid the user
of all hindrances mentioned above and others connected to
implementation and evaluation of the algorithms. The phase
reconstruction algorithms can be divided into two main classes.
Algorithms in the first class require the knowledge of the
magnitude component of the entire signal (offline only) while
algorithms in the second class are capable of running in the
real-time setting i.e. to process STFT frames in the frame-
by-frame manner. Therefore, the paper is divided into two
parts each devoted to one of the classes. The acronyms in
the typewriter font used in the titles and in the text refer to
the actual function names from the toolbox. For a detailed
description of the functions, please refer to the documentation.

A. Toolbox Organization

The toolbox is mostly written in the Matlab scripting lan-
guage compatible with GNU Octave. The main computational
functions are written in the C language for greater speed
and they are accessed trough MEX functions. The toolbox
depends on the Large Time-Frequency Analysis Toolbox [1, 2]
(LTFAT) and adopts its conventions and the GPLv3 license. The
documentation is available at http://ltfat.github.io/phaseret/doc
and the GitHub development page containing GIT reposi-
tory, release packages and the issue tracker is available at
http://github.com/ltfat/phaseret.
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II. OFFLINE ALGORITHMS

In this section, we will only consider signals of finite length
L with periodic boundaries. The STFT of such signals is also
called the (finite) discrete Gabor transform (DGT) [3] and
we will adopt such name in this paper. The DGT coefficient
matrix c ∈ CM×N of a signal f ∈ CL with respect to a window
g ∈ CL can be obtained as [4]

c(m,n) =

L−1∑
l=0

f(l + na)g(l)e−i2πml/M (1)

for m = 0, . . . ,M−1 and n = 0, . . . , N−1, M is the number
of frequency channels, N = L/a number of time shifts, a is the
hop size in samples. The overline denotes complex conjugation.
Index (l+na) is assumed to be evaluated modulo L; effectively
introducing the aforementioned periodic boundaries. In other
words, the signal f and the window g are considered to be
single periods of L-periodic signals. Note that in order not
to introduce undesirable effects caused by the phase of the
window itself, we assume the original, nonperiodized window
to be whole-point symmetric and centered around the origin.
The complex coefficients can be expressed in polar coordinates
as

s(m,n) =
∣∣c(m,n)∣∣ φ(m,n) = arg

(
c(m,n)

)
, (2)

s denoting magnitude and φ denoting their phase. The log of
the magnitude slog(m,n) = log(s(m,n)) is usually visualised
in the form of a spectrogram. Using matrices, we can write
cvec = F∗gf , where cvec ∈ CMN denotes vectorized c such that
cvec(p) = c(m,n) for p = m + nM and F∗g ∈ CMN×L is
a conjugate transpose of a “fat” (MN > L) matrix Fg with
the columns in the form of modulated and circularly shifted
versions of g (see Fig. 1)

gm,n(l) = g(l − na)ei2πm(l−na)/M ,

where (l − na) is again evaluated modulo L. Equation (1)
can be therefore equivalently expressed using inner products

c(m,n) =
〈
f ,gm,n

〉
(3)

=

L−1∑
l=0

f(l)g(l − na)e−i2πm(l−na)/M . (4)

As long as the matrix Fg has full row rank (linearly independent
rows), the signal can be recovered using f = Fg̃cvec where

Fg̃ =
(
FgF

∗
g

)−1
Fg is the left inverse of F∗g such that

Fg̃F
∗
g = FgF

∗
g̃ = I. The fundamental property of invertible

Gabor systems is that Fg̃ has the same structure as Fg with
g̃ being the synthesis window, defined by

g̃ =
(
FgF

∗
g

)−1
g. (5)
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Fig. 1: Examples of gm,n using Hann window (32 samples
long) and a = 16,M = 32 and L = 128. Circular time
shifts g0,n for n ∈ {0, 1, 2, 5} in the time domain (upper) and
modulations gm,0 for m ∈ {0, 1, 2, 9} in the frequency domain
(lower).

Note that the only requirement is the invertibility of FgF
∗
g. In

particular, it allows the support of the window g to be as long
as the signal even when the number of frequency channels M
is significantly lower than the signal length L.

The LTFAT toolbox contain implementation of fast algo-
rithms for computing the equations mentioned in this section,
therefore no matrix is explicitly inverted or created. Depending
on the length of the support of the window, the computational
functions employ either the classical Portnoff algorithm [5] or
the algorithm based on the Walnut factorization of the matrices
[6]. In LTFAT, an implementation of (1) is available as functions
dgt and dgtreal, where the latter one accepts only real
input signals and returns only half of the coefficient. The
condition number of the matrix inverted in (5) can be obtained
from gabframebounds and the synthesis window itself from
gabdual. Functions doing the inverse transform are called
idgt and idgtreal respectively. Note that it is necessary
to pass additional ’timeinv’ flag to all transform functions
in order to follow (1) exactly. See http://ltfat.github.io/doc for
more details.

Listing 1 shows how to obtain the DGT coefficients and
their magnitude from a signal and how to reconstruct it using
functions from LTFAT. The function phase rec func is only
used as a placeholder and it can be replaced by any function
doing phase reconstruction mentioned in this paper.

A. Griffin-Lim Algorithm – gla

The Griffin-Lim algorithm [7] (GLA) is arguably the most
generic algorithm for phase reconstruction. It proceeds by
projecting the coefficients iteratively onto two subsets of CMN

denoted as C1 and C2. The set C1 is identical with the range
(column) space of F∗g i.e.

C1 =
{
cvec|cvec = F∗gf for all f ∈ CL

}
. (6)

Its orthogonal complement is the null space of Fg defined as

C⊥1 =
{
cvec|Fgcvec = 0

}
. (7)

Any cvec ∈ CMN can be written as a sum of components in
these two spaces as

cvec = cC1vec + c
C⊥1
vec (8)

Listing 1: Code example of a typical workflow
% Load the g l o c k e n s p i e l t e s t s i g n a l (262144

samples )
% Sampling ra t e f s = 44100
[ f , f s ] = gsp i ;
a = 256 ; % Time step
M = 2048 ; % Number o f f requency channe l s
g = 'blackman ' ; % Blackman window
g t i l d e = {'dual ' , g } ; % Synthes i s window
% Compute the DGT c o e f f i c i e n t s c , Ls=numel ( f )
[ c , Ls ] = dg t r e a l ( f , g , a ,M, ' t imeinv ' ) ;
% Obtain the magnitude
s = abs ( c ) ;
% Reconstruct the phase
chat = phase rec func ( s , ...
% Reconstruct the s i g n a l
fha t = i d g t r e a l ( chat , g t i l d e , a ,M, Ls , ' t imeinv ' ) ;

and there exists an unique orthogonal projection onto C1 (see
e.g. [8])

PC1cvec = F∗g

(
FgF

∗
g

)−1
Fgcvec = F∗gFg̃cvec = cC1vec, (9)

which amounts to synthesis using the window g̃ obtained by
(5) followed by analysis using the original window g. The
magnitude of cC1vec is also often called a valid or consistent
spectrogram [9] since it is guaranteed that these exists a signal
with such spectrogram. The set C2 is a set of coefficients with
magnitude equal to the target magnitude svec

C2 =
{
cvec|

∣∣cvec(p)
∣∣ = svec(p)

}
. (10)

Since it is not a convex set, the projection is substituted
simply by forcing the magnitude of the coefficients to the
target magnitude

(PC2cvec) (p) = svec(p)cvec(p)/
∣∣cvec(p)

∣∣ . (11)

The composition of the projections then gives i-th iteration of
GLA

cvec,i = PC2PC1cvec,i−1. (12)

given cvec,0(p) = svec(p)e
iφvec,0(p) for all p, where svec is the

target magnitude and φvec,0 is the initial phase. A common
approach is to choose zeros or random values, but it has
been reported that the performance of the algorithm can be
improved significantly by choosing suitable initial phase [10].
The algorithm has been also used for other transforms as
well [11] and, furthermore, the nature of the algorithm allows
creating ad-hoc algorithms by imposing additional constraints
in time or time-frequency domains [12, 13, 14].

Perraudin et al. [15] proposed a fast version of GLA (FGLA)
by introducing an acceleration step which combines the current
and the previous iterations with weight αk as shown in Alg. 1.
The optimal sequence αi for the FGLA remains an open
question. Constant αi = 0.99 was suggested by the authors.
Note that αi = 0 reverts the algorithm back to the regular
GLA.
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Algorithm 1: (Fast) Griffin-Lim algorithm
Input: Initial coefficients cvec,0, initial α0.
Output: Coefficients with new phase cvec,i.

1 tvec,0 = cvec,0;
2 for i = 1, 2, . . . do
3 tvec,i = PC2PC1cvec,i−1;
4 cvec,i = tvec,i + αi−1(tvec,i − tvec,i−1);
5 Update αi;
6 end

B. Le Roux’s Modifications of GLA – legla

Le Roux et al. [9] proposed several modifications of the
Griffin-Lim algorithm. First, they recognized a structure in the
projection (9) and proposed its approximation using a truncated
kernel. Second, since this way the projection (9) can be done
coefficient-wise and so can be done (11), the authors proposed
to do on-the-fly updates i.e. to reuse the just updated coefficient
for computing others within the same iteration. Third, they
proposed a modified phase update (omitting contribution of the
coefficient being updated). The projection (9) can be written
in a form of (non-commutative) circular twisted convolution
[16]

(cvec\hvec) (m+ nM) =
M−1,N−1∑
j,k=0

c(j, k)h(m− j, n− k)ei2π(n−k)ja/M
(13)

where the kernel is obtained as hvec = F∗gg̃. Clearly, there
is only lcm(a,M)/a (least common multiple) unique kernel
modulations which can be precomputed. Typically, the kernel
h is essentially supported around the origin and it can be
truncated with only a minor loss of precision. Further, the
kernel is conjugate symmetric, which can be exploited to reduce
the number of multiplications. Note that the modified phase
update can be obtained simply by setting h(0, 0) = 0. The
algorithm is summarized as Alg. 2. Note that the acceleration
technique from [15] can be used here as well.

Algorithm 2: Le Roux’s version of GLA
Input: Initial coefficients cvec,1.
Output: Coefficients with new phase cvec,i.

1 Initialize and order array I of indices p to be processed;
2 for i = 1, 2, . . . do
3 for all p ∈ I do
4 cvec,i(p)←

svec(p)
(
cvec,i\hvec

)
(p)/

∣∣∣(cvec,i\hvec
)
(p)
∣∣∣;

5 end
6 end

C. Unconstrained Optimization – decolbfgs

Decorsiere et al. [17] proposed to take a direct optimization
approach. Writing the objective function as

G(f) =
∥∥∥∥∣∣∣F∗gf ∣∣∣q − sqvec

∥∥∥∥2 (14)

(the q-th power is performed elementwise) and expressing its
gradient explicitly as

∇G(f) =

2qR

Fg

[(∣∣∣F∗gf ∣∣∣q − sqvec

)
·
∣∣∣F∗gf ∣∣∣ q2−1 · F∗gf

] (15)

(R denotes the real-part operator) allows usage of generic
algorithms for unconstrained minimization. The authors suggest
the l-BFGS algorithm as it does not require explicit second
order derivatives. Further, they suggested to pick q = 2/3. Note
that the function decolbfgs requires the implementation of
lBFGS from the minFunc package [18].

D. Phase Gradient Heap Integration – pghi

Průša et al. [10] proposed a phase reconstruction method
based on the relationship between the magnitude and the
phase gradients. Assuming the Gaussian window is used, the
phase gradient can be estimated using the magnitude gradient
and the phase is then recovered by employing an adaptive
integration procedure. The estimate of the phase derivative in
the frequency direction φω(m,n) and in the time direction
φt(m,n) expressed solely from the magnitude (pre-scaled for
the integration) can be written as

φω(m,n) =

− γ

2aM

(
slog(m,n+ 1)− slog(m,n− 1)

)
φt(m,n) =

aM

2γ

(
slog(m+ 1, n)− slog(m− 1, n)

)
+ 2πam/M

(16)

with γ being the “time-frequency” ratio of the Gaussian window.
Given phase at a single point φ(m,n), the phase of its four
neighbors is computed as

φ(m+ 1, n)← φ(m,n) +
1

2

(
φω(m,n) + φω(m+ 1, n)

)
,

φ(m,n+ 1)← φ(m,n) +
1

2

(
φt(m,n) + φt(m,n+ 1)

)
,

φ(m− 1, n)← φ(m,n)− 1

2

(
φω(m,n) + φω(m− 1, n)

)
,

φ(m,n− 1)← φ(m,n)− 1

2

(
φt(m,n) + φt(m,n− 1)

)
.

Further phase spreading is guided by the coefficient magnitude
such that the phase of significant coefficients along spectrogram
ridges is computed first. For non-Gaussian windows, the
approximate γ can be obtained from pghi_findgamma.

III. REAL-TIME ALGORITHMS

When dealing with real-time algorithms, the finite length
signal model from the previous section is no longer suitable. In
order to model streams of audio data, it is a common practice to
work with infinite length discrete time signals. In this section,
we will reformulate STFT for such signals and use it in the
description of the algorithms. Given a discrete time signal f
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and a compactly supported window g, the STFT at time index
na denoted as cn is given by

cn(m) =
∑
l∈I

f(l + na)g(l)e−i2πml/M (17)

for m = 0, . . . ,M − 1 and any n ∈ Z and where I denotes
the compact support of the window g. We again assume the
window is symmetric around the origin. We will further also
use the following operator notation(

Vgf
)
n
= cn (18)

and denote the magnitude of the coefficients of the n-th frame
as sn, the logarithm of the coefficients as slog,n and the phase
as φn. An individual time frame fn can be reconstructed using

fn(l) = g̃(l)

M−1∑
m=0

cn(m)ei2πml/M (19)

for l ∈ I and zero elsewhere. If a < len(g) ≤ M (len(g)
being the length of the window support), the synthesis window
g̃ is given by

g̃(l) =
1

M

g(l)∑
n∈Z g(l − na)2

, (20)

for l ∈ I and is zero elsewhere. Partially reconstructed signal
up to frame N is given by

f̃N (l) =

N∑
n=−∞

fn(l − na). (21)

In the following text, the function names will refer
to the offline implementation of the algorithms. The
true real-time implementation of the algorithms is
available in demo_blockproc_phaseret and
demo_blockproc_phaseret2.

A. Single Pass Spectrogram Inversion – spsi

Beauregard et al. [19] proposed a phase vocoder-like
technique for phase reconstruction. It employs peak picking
followed by quadratic interpolation of the magnitude in order
to precisely identify the instantaneous frequency. The inst.
frequency gives the increment of the peak phase between two
frames. The peak phase is also assigned to all coefficients
within its region of influence. The steps of the algorithm are
summarized in Alg. 3.

B. Real-Time Phase Gradient Heap Integration – rtpghi

Průša and Søndergaard [20] proposed an adaptation of the
PGHI algorithm to the real-time setting (RTPGHI). The core
of the algorithm was kept, with the exception that the phase
is spread only from the previous to the current frame. From
(16), it is clear that the algorithm requires access to slog,n+1

i.e. it requires one look-ahead frame. Employing a causal
differentiation scheme yields even zero look-ahead frames.

Algorithm 3: SPSI
Input: Magnitude of n-th frame sn, phase of the previous

frame φn−1.
Output: Phase of the current frame φn.

1 Identify peaks sn(mpeak) and their regions of influence
ROImpeak .;

2 for all mpeak do
3 mtruepeak ←

mpeak +
1
2

slog,n(mpeak−1)−slog,n(mpeak+1)
slog,n(mpeak−1)−2slog,n(mpeak)+slog,n(mpeak+1) ;

4 φn(mpeak)← φn−1(mpeak) + 2πamtruepeak/M ;
5 φn(m)← φn(mpeak) for all m ∈ ROImpeak ;
6 end

C. Real-Time Iterative Spectrogram Inversion With Look-Ahead
– rtisila

Zhu et al. [21] proposed a real-time iterative algorithm based
on the idea of GLA. It employs NLA look-ahead frames and
proceeds by doing GLA-type iterations on individual frames
in the order from the most recent one to the current one
and repeats this procedure for a pre-determined number of
iterations. The fundamental problem of the approach is the
inherent asymmetry introduced by windowing the partially
reconstructed signal. In order to compensate this problem, the
authors proposed to use two additional asymmetric analysis
windows gNLA,−1 and gNLA,0 to be used with the most recent
look-ahead frame and to use the regular analysis window for
other frames. The additional windows are obtained as

gNLA,−1(l) =M

−1∑
n=−NLB

g(na− l)g̃(na− l), (22)

gNLA,0(l) =M

0∑
n=−NLB

g(na− l)g̃(na− l), (23)

for l ∈ I and zero elsewhere, where NLB =
⌈
len(g)/a

⌉
− 1 is

the number of “look-back” frames. Window gNLA,−1 is only
used in the very first iteration, while gNLA,0 is used for all
the following iterations. In the algorithm listing in Alg. 4 the
analysis windows gk are equal to g except for k = NLA for
which the above applies.

D. Gnann and Spiertz’s RTISI-LA – gsrtisila

Gnann and Spiertz [22] proposed an alternative way of
dealing with the asymmetry of the partially reconstructed signal.
They proposed to use NLA + 1 additional analysis windows
g0, . . . , gNLA computed as

gk(l) =M
g(l)

gsum(l + ka)
(24)

for l ∈ I and zero elsewhere and

gsum(l) =

NLA∑
n=−NLB

g(l − na)g̃(l − na). (25)

For this version of RTISI-LA, the listing in Alg. 4 applies
without changes.

A combination of GSRTISI-LA with RTPGHI proved to
give excellent results [23].
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Algorithm 4: (GS)RTISI-LA
Input: Number of look-ahead frames NLA, magnitude of

the current and the look-ahead frames
sn, . . . , sn+NLA

Output: Time frame fn and its coefficients cn.
1 Initialize fn+NLA to zeros.;
2 for i = 1, 2, . . . do
3 for k = NLA, . . . , 0 do
4 Compute f̃n+NLA using (21).;

5 t←
(
Vgk f̃n+NLA

)
n+k

;

6 cn+k(m)← sn+k(m) t(m)/
∣∣t(m)

∣∣;
7 Compute fn+k using (19);
8 end
9 end

IV. OTHER ALGORITHMS

The toolbox is primarily focused on processing audio signals
which consist of tens of thousands of samples per second. We
have intentionally not included implementation of algorithms
which cannot efficiently handle signals at least few seconds
long or which have some other serious drawback. In this section,
we mention other approaches and give a reason why they are
not practical for processing audio signals.

A popular approach is reformulating the problem as a convex,
matrix rank minimization problem [24, 25, 26]. Doing so
however squares the size of the original problem and only very
short signals can be handled efficiently. The authors themselves
evaluate the algorithms on signals shorter than 100 samples.

An approach by Bouvrie and Ezzat [27] is based on solving a
non-linear system of equations for each time frame. It however
relies on using a rectangular window for analysis which is
known to have bad frequency selectivity.

Worth mentioning is an algorithm by Eldar et. al. [28] which
is only applicable to signals which are sparse in the original
domain. Such assumption is not realistic when considering real
world audio signals.
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