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A Non-iterative Method for Reconstruction of Phase
from STFT Magnitude

Zdeněk Průša, Peter Balazs, Senior Member, IEEE, and Peter L. Søndergaard

Abstract—A non-iterative method for the reconstruction of the
Short-Time Fourier Transform (STFT) phase from the magnitude
is presented. The method is based on the direct relationship
between the partial derivatives of the phase and the logarithm
of the magnitude of the un-sampled STFT with respect to the
Gaussian window. Although the theory holds in the continuous
setting only, the experiments show that the algorithm performs
well even in the discretized setting (Discrete Gabor transform)
with low redundancy using the sampled Gaussian window, the
truncated Gaussian window and even other compactly supported
windows like the Hann window. Due to the non-iterative nature,
the algorithm is very fast and it is suitable for long audio signals.
Moreover, solutions of iterative phase reconstruction algorithms
can be improved considerably by initializing them with the
phase estimate provided by the present algorithm. We present
an extensive comparison with the state-of-the-art algorithms in
a reproducible manner.

Index Terms—STFT, Gabor transform, Phase reconstruction,
Gradient theorem, Numerical integration

I. INTRODUCTION

The phase retrieval problem has been actively investigated
for decades. It was first formulated for the Fourier transform
[1] and later for generic linear systems [2]. In this paper, we
consider a particular case of the phase retrieval problem; the
reconstruction from the magnitude of the Gabor transform
coefficients obtained by sampling the STFT magnitude at
discrete time and frequency points [3]. The need for an effec-
tive way to reconstruct the phase arises in audio processing
applications such as source separation and denoising [4], [5],
time-stretching/pitch shifting [6], channel mixing [7], and
missing data imputation [8].

The problem has already been addressed by many authors.
Among the iterative algorithms, the most widespread and
influential is the algorithm introduced by Griffin and Lim [9]
(GLA) which inspired several extensions [10], [11] (FleGLA)
and [12], [13] (TF-RTISI-LA). For a detailed overview of the
algorithms based on GLA we refer the reader to the work by
Sturmel and Daudet [14]. A different approach was taken by
Decorsiere et al. [15] (lBFGS). They expressed the problem
as an unconstrained optimization problem and solve it using
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the limited memory Broyden-Flatcher-Goldfarb-Shanno algo-
rithm. It is again an iterative algorithm and the computational
cost of a single iteration is comparable to that of GLA. Other
approaches are based on reformulating the task as a convex
optimization problem [16], [17], [18], [19]. The dimension of
the problem however squares, which makes it unsuitable for
long audio signals which typically consist of tens of thousands
of samples per second. Eldar et al. [20] assume the signal to
be sparse in the original domain, which is not realistic in the
context of the audio processing applications mentioned above.
An approach presented by Bouvrie and Ezzat [21] is based on
solving a non-linear system of equations for each time frame.
The authors proposed to use an iterative solver and initialize
it with samples obtained from previous frames. The algorithm
is, however, designed to work exclusively with a rectangular
window, which is known to have bad frequency selectivity.

The common problem of the iterative state-of-the-art algo-
rithms is that they require many relatively expensive iterations
in order to produce acceptable results. A non-iterative algo-
rithm proposed by Beauregard et al. [22] (SPSI) is based on
the notion of phase consistency used in the phase vocoder
[6]. Although the algorithm is simple, fast and it is directly
suitable for the real-time setting, it relies on the fact that
the signal consists of slowly varying sinusoidal components
and fails for transients and broadband components in general.
Magron et al. [23] introduced a similar algorithm based on
phase unwrapping (PU). It acts entirely like SPSI for harmonic
components but it tries to treat the impulse-like components
separately.

In this paper, we propose a non-iterative algorithm called
Phase Gradient Heap Integration (PGHI). The theory behind
PGHI has been known at least since 1979 when Portnoff [24]
presented a simple relationship between the partial derivatives
of the phase and the log of the magnitude of a STFT computed
using a Gaussian window. Given the phase gradient expressed
using the magnitude gradient and given the phase at one point,
one can invoke the gradient theorem to integrate and obtain
the phase elsewhere. To our knowledge, no such algorithm
has been published yet. In our previous work [25], we have
presented a special case of PGHI adapted to the real-time
setting. The present paper focuses on providing a complete
mathematical treatment and on a thorough comparison with
other algorithms in the offline setting. The aforementioned al-
gorithms SPSI and PU are in fact close to the PGHI algorithm
since they both basically perform a simple integration of the
estimate of instantaneous frequency and in case of PU also
of the local group delay, which are components of the STFT
phase gradient. Their approach however cannot estimate the
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gradient at every time-frequency position and the estimation
requires analysing the spectrogram content.

In the spirit of reproducible research, the implementation of
the algorithms, audio examples, color version of the figures as
well as scripts reproducing experiments from this manuscript
are freely available at http://ltfat.github.io/notes/040. The code
depends on our Matlab/GNU Octave [26] packages LTFAT
[27], [28] and PHASERET available at http://ltfat.github.io
and http://ltfat.github.io/phaseret, respectively.

The paper is organized as follows. Section II summarizes
the necessary theory of the STFT and the Gabor analysis,
Section III presents the theory behind the proposed algorithm,
Section IV contains a detailed description of the numerical
algorithm. Finally, in Section V we present an extensive
evaluation of the proposed algorithm and comparison with the
iterative and non-iterative state-of-the-art algorithms using the
Gaussian window, the truncated Gaussian window, the Hann
and the Hamming windows.

II. GABOR ANALYSIS

The STFT and its sampled version, the Gabor transform,
are ubiquitous tools for audio analysis and processing. In this
section, we define essential formulas for the analysis and the
synthesis with respect to a generic window. We will further
focus on the properties of the Gaussian window, which is
essential for deriving the fundamental equations the PGHI
algorithm is based on.

A. STFT

The short-time Fourier transform of a function f ∈ L2(R)
with respect to a window g ∈ L2(R) can be defined as1

(Vgf)(ω, t) =

∫
R
f(τ + t)g(τ)e−i2πωτ dτ, ω, t ∈ R, (1)

assuming both f, g are real valued. The magnitude and phase
components can be separated by

Mf
g =

∣∣Vgf ∣∣ and Φfg = arg
(
Vgf

)
, (2)

assuming arg(·) returns the principal value of the angle. Using
the modulation (Eωf) (τ) = ei2πωτ · f(τ) and translation
(Ttf) (τ) = f(τ − t) we get the alternative representation(
Vgf

)
(ω, t) = 〈f, TtEωg〉.

The Gaussian function is a particularly suitable window
function as it possesses optimal time-frequency properties
(achieves minimum time-frequency spread [3]) and it allows
an algebraic treatment of the equations. It is defined by the
following formula

ϕ
λ
(t) = e−π

t2

λ =
(
D√λϕ1

)
(t), (3)

where λ ∈ R+ denotes the “width” or the time-frequency ratio
of the Gaussian window and Dα is a dilation operator such
that (Dαf)(t) = f(t/α), α 6= 0. The Gaussian is invariant
under the Fourier transform (up to normalization) for λ = 1
and we will use the shortened notation ϕ = ϕ

1
in the following

text.
1In the literature, two other STFT phase conventions can be found. The

present one is the most common in the engineering community.

B. Discrete Gabor Transform – DGT

The discrete Gabor transform coefficients c ∈ CM×N of
a signal f ∈ RL with respect to a window g ∈ RL can be
obtained as [29]

c(m,n) =

L−1∑
l=0

f(l + na)g(l)e−i2πml/M (4)

for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1, M = L/b
is the number of frequency channels, N = L/a number of
time shifts, a is the length of the time shift or a hop size in
samples in the time direction and b is a hop size in samples in
the frequency direction and (l+na) is assumed to be evaluated
modulo L. Separating amplitude and phase also in the discrete
case we get

c(m,n) = s(m,n) · eiφ(m,n), (5)

s denoting magnitude of the coefficients and φ denoting their
phase. In the matrix notation, we can write cvec = F∗gf , where
cvec ∈ CMN denotes the vectorized c such that cvec(m +
nM) = c(m,n) and F∗g is a conjugate transpose of L×MN
matrix Fg (note that this matrix has a very particular block-
structure [30]). The DGT can be seen as sampling of the STFT
(both of the arguments ω and t and the involved functions
f and g themselves) of one period of L-periodic continuous
signal f such that

c(m,n) =
(
Vgf

)
(bm, an) +A(m,n), (6)

for m = 0, . . . ,M − 1, n = 0, . . . , N − 1 where A(m,n)
models both the aliasing and numerical errors introduced
by the sampling. The range of m can be shrunken to the
first bM/2c + 1 values as the remaining coefficients are
only different by complex conjugation. Moreover, the zero-
frequency coefficients (m = 0) are always real and so are the
Nyquist-frequency coefficients (m = M/2) if M is even.

Signal f can be recovered (up to a numerical precision
error) using the following formula

f(l) =

N−1∑
n=0

M−1∑
m=0

c(m,n)g̃(l − na)ei2πm(l−na)/M (7)

for l = 0, . . . , L − 1. In the matrix notation, we can write
f = Fg̃cvec. Here g̃ is the canonical dual window, defined by

g̃ =
(
FgF

∗
g

)−1
g. (8)

See e.g. [31] for conditions under which the product FgF
∗
g

is (easily) invertible and [32], [33] for efficient algorithms for
computing (4), (7) and (8). In particular the block structure
can be used for a pre-conditioning approach [30].

One period of the discretized and periodized Gaussian
window is given by

ϕ
λ
(l) =

∑
k∈Z

e−π
(l+kL)2

λL , l = 0, . . . , L− 1. (9)

We assume that L and λ are chosen such that the overlap of
the window “tails” after periodization is numerically negligible
and therefore it is sufficient to sum over k ∈ {−1, 0} in
practice. The width of the Gaussian window at its relative
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height h ∈ [0, 1] can be written as (expressed from (9) using
just k = 0)

wh =

√
−4 log(h)

π
λL. (10)

The width is given in samples and it can be a non-integer
number. This equation becomes relevant when working with
truncated Gaussian window and when determining λ for non-
Gaussian windows. For other window type used, we took
λ of the closest Gaussian window in the least mean square
error sense. The window was obtained via a simple heuristic
search. Note that all windows used in this manuscript are odd
symmetric, such that they have a unique center sample, and
they are non-causal such that they introduce no delay. Finally,
the discrete Fourier transform of such windows is real.

III. STFT PHASE RECONSTRUCTION

The algorithm is based on the direct relationship between
the partial derivatives of the phase and the log-magnitude
of the STFT with respect to the Gaussian window. More
precisely, the time derivative of the log-magnitude defines
the frequency derivative of the phase and, vice versa, the
frequency derivative of the log-magnitude defines the time
derivative of the phase. In this section, we derive such relations
and show that, in theory, it is possible to reconstruct the phase
from its gradient up to a constant global phase shift. We
include a complete derivation since the relations for the STFT
as defined in (1) have not appeared in the literature, as far
as we know. Our approach is based on the properties of the
Bargmann transform [3], [34] which is closely related to the
STFT with respect to the Gaussian window with λ = 1.

A. Phase-Magnitude Relationship

It is known that the Bargmann transform of f ∈ L2(R)

(Bf) (z) =

∫
R
f(τ)e2πτz−πτ

2−π2 z
2

dτ, z ∈ C (11)

is an entire function [35] and that it relates to the STFT defined
in (1) such that

(Bf)(z) = eπitω+π
|z|2
2 (Vϕf)(−ω, t), (12)

assuming f is real valued and z = t+iω. Furthermore, the log-
arithm of the Bargmann transform is an entire function (apart
from zeros) and the real and imaginary parts of log(Bf)(z)
can be written as

log(Bf)(t+ iω) = u(ω, t) + iv(ω, t) (13)

u(ω, t) = π(t2 + ω2)/2 + logMf
ϕ(−ω, t) (14)

v(ω, t) = πtω + Φfϕ(−ω, t) (15)

and using the Cauchy-Riemann equations

∂u
∂t (ω, t) = ∂v

∂ω (ω, t), ∂u
∂ω (ω, t) = −∂v∂t (ω, t) (16)

we can write (substituting ω′ = −ω) that

∂
∂ω′Φ

f
ϕ(ω′, t) = − ∂

∂t logMf
ϕ(ω′, t) (17)

∂
∂tΦ

f
ϕ(ω′, t) = ∂

∂ω′ logMf
ϕ(ω′, t) + 2πω′. (18)

A little more general relationships can be obtained for
windows defined as g = Oϕ1 (O being a fixed bounded
operator) and Proposition 1.

Proposition 1. Let O,P be bounded operators such that for
all (ω, t) there exist differentiable, strictly monotonic functions
η(t) and ξ(ω), such that TtEωO = PTη(t)Eξ(ω) and let g =
Oϕ1 . Then

∂
∂ωΦfg (ω, t) = − ∂

∂t logMf
g (ω, t) · ξ

′(ω)

η′(t)
(19)

∂
∂tΦ

f
g (ω, t) = ∂

∂ω logMf
g (ω, t) · η

′(t)

ξ′(ω)
+ 2πξ(ω)η′(t). (20)

Proof. Consider(
Vgf

)
(ω, t) = 〈f, TtEωg〉 = 〈f, TtEωOϕ1

〉

=
〈
P∗f, Tη(t)Eξ(ω)ϕ1

〉
=
(
Vϕ

1
(P∗f)

) (
ξ(ω), η(t)

)
and therefore

∂
∂tΦ

f
g (ω, t) = ∂

∂t

[
ΦP
∗f

ϕ
1

(
ξ(ω), η(t)

)]
=
[
∂
∂ηΦP

∗f
ϕ
1

(
ξ(ω), η(t)

)]
· η′(t).

Furthermore
∂
∂ω logMf

g (ω, t) =
[
∂
∂ξ logMP

∗f
ϕ
1

(
ξ(ω), η(t)

)]
· ξ′(ω).

Combining this with (18) we obtain (20)

∂
∂tΦ

f
g (ω, t) =

[
∂
∂ηΦP

∗f
ϕ1

(
ξ(ω), η(t)

)]
· η′(t)

=
[
∂
∂ξ logMP

∗f
ϕ
1

(
ξ(ω), η(t)

)
+ 2πξ(ω)

]
· η′(t)

= ∂
∂ω logMf

g (ω, t) · η
′(t)

ξ′(ω)
+ 2πξ(ω)η′(t).

The other equality can be shown using the same arguments
and (17).

Choosing O = D√λ, ξ(ω) =
√
λω and η(t) = t/

√
λ leads to

equations for dilated Gaussian window ϕ
λ

∂
∂ωΦfϕ

λ
(ω, t) = −λ ∂

∂t logMf
ϕ
λ

(ω, t) (21)

∂
∂tΦ

f
ϕ
λ

(ω, t) =
1

λ
∂
∂ω logMf

ϕ
λ

(ω, t) + 2πω. (22)

The relations were already published in [24], [36], [37], [38]
in slightly different forms obtained using different techniques
than we use here. The equations differ because the authors of
the above mentioned papers use different STFT phase conven-
tions. Chassande-Mottin et al. [36] showed that similar equa-
tions exist even for general windows. They however involve
additional non-analytic terms and thus it seems they cannot
be exploited directly. Moreover, the experiments presented
in Section V show that the performance degradation is not
too significant when using windows resembling the Gaussian
window like the Hann, the Hamming or the Blackman window.

The STFT phase gradient of a signal f with respect to
dilated Gaussian ϕ

λ
will be further denoted as

∇Φfϕ
λ

(ω, t) =
[
∂
∂ωΦfϕ

λ
(ω, t), ∂∂tΦ

f
ϕ
λ

(ω, t)
]
. (23)
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Note that the derivative of the phase has a peculiar pole pattern
around zeros [39].

B. Gradient Integration and the Phase Shift Phenomenon

Knowing the phase gradient, one can exploit the gradient
theorem (see e.g. [40]) to reconstruct the original (unwrapped)
phase Φfϕ

λ
(ω, t) such that

Φfϕ
λ

(ω, t)− Φfϕ
λ

(ω0, t0) =

∫ 1

0

∇Φfϕ
λ

(
r (τ)

)
· dr

dτ
(τ) dτ,

(24)
where r(τ) = [rω(τ), rt(τ)] is any curve starting at (ω0, t0)
and ending at (ω, t) provided the phase at the initial point
(ω0, t0) is known. When the phase is unknown completely, we
consider Φfϕ

λ
(ω0, t0) = 0 which causes a global phase shift.

The phase shift of the STFT carries over to the global phase
shift of the reconstructed signal through the linearity of the
reconstruction. One must, however, treat real input signals with
care as the phase shift breaks the complex conjugate relation
of the positive and negative frequency coefficients. This rela-
tionship has to be either recovered or enforced because if one
simply takes only the real part of the reconstructed signal the
phase shift can cause amplitude attenuation or even causes the
signal to vanish in extreme cases. To explain this phenomenon,
consider the following example where we compare the effect
of the phase shift on analytic and on real signals. We denote
the constant phase shift as ψ0 and define an analytic signal as
xan(t) = A(t)eiψ(t). The real part including the global phase
shift (eiψ0 ) is given as R(xan(t)eiψ0) = A(t) cos(ψ(t) + ψ0)
which is what one would expect. Similarly, we define a
real signal as x(t) = A(t)

2

(
eiψ(t) + e−iψ(t)

)
and the real

part of such signal with the global phase shift ψ0 amounts
to R(x(t)eiψ0) = A(t) cos(ψ0) cos(ψ(t)) which causes the
signal to vanish when ψ0 = π/2 + kπ, k ∈ Z.

In theory, the global phase shift of the STFT of a real
signal can be compensated for, leaving only a global signal
sign ambiguity. For real signals, it is clear that the following
holds for ω 6= 0

Φ̃fϕ
λ

(ω, t) + Φ̃fϕ
λ

(−ω, t) = 2ψ0. (25)

After the compensation, due to the phase wrapping, the phase
shift is still ambiguous up to an integer multiple of π, which
causes the aforementioned signal sign ambiguity.

IV. THE ALGORITHM

In the discrete time setting (recall Section II-B; in par-
ticular (4) and (5)) the STFT phase gradient approximation
∇̂Φϕ

λ
(bm, an) = ∇φ(m,n) is obtained by numerical differ-

entiation of slog(m,n) = log
(
s(m,n)

)
as

∇φ(m,n) =
[
φω(m,n),φt(m,n)

]
= (26)[

−λ
a

(slogDt)(m,n),
1

λb
(Dωslog)(m,n) + 2πm/M

]
(27)

where Dt,Dω denote matrices performing the numerical
differentiation of slog along rows (in time) and columns (in
frequency) respectively. The matrices are assumed to be scaled
such that the sampling step of the differentiation scheme they

represent is equal to 1. The central (mid-point) finite difference
scheme (see e.g. [41]) is the most suitable because it ensures
the gradient components to be sampled at the same grid.
The steps of the numerical integration will be done in either
horizontal or vertical directions such that exclusively one of
the components in dr

dτ from (24) is zero. Due to this property,
the gradient can be pre-scaled using hop sizes a and b such
that

∇φSC(m,n) =
[
bφω(m,n), aφt(m,n)

]
= (28)[

− λL

aM
(slogDt)(m,n),

aM

λL
(Dωslog)(m,n) + 2πam/M

]
.

(29)

Note that the dependency on L can be avoided when (10) is
used to express λL. This is useful e.g. when the signal length
is not known in advance.

The numerical integration of the phase gradient is performed
over the prominent contours of the spectrogram first in order
to reduce accumulation of the error. The magnitude of the
coefficients is used as a guide such that integration paths are
chosen adaptively following the spectrogram ridges first. Such
behavior is achieved by employing a heap data structure (from
the heapsort algorithm [42]), which it is used for holding
pairs (m,n) and it has the property of having (m,n) of the
maximum |c(m,n)| always at the top. It is further equipped
with efficient operations for insertion and deletion. Even after
employing the heap, nothing stops the integration paths to go
trough areas with coefficients small in magnitude where the
phase gradient estimate is unreliable [39]. Therefore, in order
to avoid further accumulation of the error, we introduce the
relative magnitude tolerance tol . It causes the algorithm to
perform the integration only locally on “islands” of coefficients
above tol with the max coefficient within the island serving
as the zero phase reference. The coefficients below tol are
assigned a random phase (uniformly distributed random values
from the range [0, 2π]). The randomization of the phase of the
coefficients below the tolerance is chosen over the zero phase
because in practice it helps to avoid the impulsive disturbances
introduced by the small phase-aligned coefficients. The algo-
rithm is summarized in Alg. 1 and a graphical step-by-step
example can be found at the accompanying webpage.

After φ̂(m,n) has been estimated by Alg. 1, it is combined
with the target magnitude of the coefficients such that

ĉ(m,n) = s(m,n)eiφ̂(m,n) (30)

and the signal f̂ is recovered by simply plugging these
coefficients into (7).

A. Practical Considerations

In this section, we analyze the effect of the discretization
on the performance of the algorithm. The obvious sources of
error are the numerical differentiation and integration schemes.
However, the aliasing introduced by subsampling in time
and frequency domains is more serious. In the discrete time
setting, since the signal is considered to be band-limited and
periodic, the truly aliasing-free case occurs when a = 1, b = 1
(M = L,N = L) regardless of the time or the frequency



PRŮŠA et al.: A NON-ITERATIVE METHOD FOR RECONSTRUCTION OF PHASE FROM STFT MAGNITUDE 5

Algorithm 1: Phase gradient heap integration – PGHI
Input: DGT phase gradient

∇φSC(m,n) =
(
φSC
ω (m,n),φSC

t (m,n)
)

obtained
from (29), magnitude of DGT coefficients∣∣c(m,n)

∣∣, relative tolerance tol .
Output: Estimate of the DGT phase φ̂(m,n).

1 Set I =

{
(m,n) :

∣∣c(m,n)
∣∣ > tol ·max

(∣∣c(m,n)
∣∣)};

2 Assign random values to φ̂(m,n) where (m,n) /∈ I;
3 Construct a self-sorting heap for (m,n) pairs;
4 while I is not ∅ do
5 if heap is empty then
6 Insert (m,n)max = arg max(m,n)∈I

(∣∣c(m,n)
∣∣)

into the heap;
7 φ̂(m,n)max ← 0;
8 Remove (m,n)max from I;
9 end

10 while heap is not empty do
11 (m,n)← remove the top of the heap;
12 if (m+ 1, n) ∈ I then
13 φ̂(m+ 1, n)←

φ̂(m,n) + 1
2

(
φSC
ω (m,n) + φSC

ω (m+ 1, n)
)

;
14 Insert (m+ 1, n) into the heap;
15 Remove (m+ 1, n) from I;
16 end
17 if (m− 1, n) ∈ I then
18 φ̂(m− 1, n)←

φ̂(m,n)− 1
2

(
φSC
ω (m,n) + φSC

ω (m− 1, n)
)

;
19 Insert (m− 1, n) into the heap;
20 Remove (m− 1, n) from I;
21 end
22 if (m,n+ 1) ∈ I then
23 φ̂(m,n+ 1)←

φ̂(m,n) + 1
2

(
φSC
t (m,n) + φSC

t (m,n+ 1)
)

;
24 Insert (m,n+ 1) into the heap;
25 Remove (m,n+ 1) from I;
26 end
27 if (m,n− 1) ∈ I then
28 φ̂(m,n− 1)←

φ̂(m,n)− 1
2

(
φSC
t (m,n) + φSC

t (m,n− 1)
)

;
29 Insert (m,n− 1) into the heap;
30 Remove (m,n− 1) from I;
31 end
32 end
33 end

effective supports of the window. DGT with such setting
is however highly redundant and only signals up to several
thousands samples in length can be handled effectively.

In the subsampled case, the amount of aliasing and therefore
the performance of the algorithm depends on the effective
support of the window. Increasing a introduces aliasing in

frequency and increasing b introduces aliasing in time. The
effect of the length of the time hop size a on the performance
of the algorithm is illustrated by the phase error plots depicted
in Figure 1. In the aliasing free case (Fig. 1b), the algorithm
even achieves a constant phase shift for all coefficients with
relative magnitude above −60 dB (cf. phase shift phenomenon
in Section III-B). This behavior however quickly deteriorates
when longer hop size is introduced (Fig. 1c and 1d). The length
of the signal is 5888 samples and the time-frequency ratio of
the Gaussian window is λ = 1. The hop size in frequency is
b = 1 (i.e. M = 5888).

Even though the Gaussian window is, in theory, infinitely
supported in both time and frequency, it decays exponentially
and therefore aliasing might not significantly degrade the
performance of the algorithm when choosing the hop sizes
and the effective support carefully. Obviously the finer the
hop sizes the higher the computational cost. The authors
recommend to use redundancy M/a = 8 and λ = aM/L
or simply 87.5% window overlap with compactly supported
windows. Such setting is also used in Section V. An interesed
reader can find a demo script comparing several window
overlaps at the accompanying web page.

Since it is clear that the phase shift achieved by the
algorithm is not constant, the conjugate symmetry of the DGT
of real signals cannot be easily recovered. Therefore, we re-
construct the phase only for the positive frequency coefficients
and enforce the conjugate symmetry to the negative frequency
coefficients.

B. Exploiting Partially Known Phase

In some scenarios, the true phase of some of the coefficients
is available. In order to exploit such information, the proposed
algorithm has to be adjusted slightly. First, we introduce a
mask to select the reliable coefficients and second, we select
the border coefficients i.e. coefficients with at least one neigh-
bor in the time-frequency plane with unknown phase. Then
we simply initialize the algorithm with the border coefficients
stored in the heap. Formally, Alg. 1 will be changed such
that steps summarized in Alg. 2 are inserted after line 3. Note

Algorithm 2: Initialization for partially known phase
Input: Set of indices of coefficients M with known

phase φ(m,n).
1 φ̂(m,n)← φ(m,n) for (m,n) ∈M;
2 for (m,n) ∈M∩ I do
3 if (m+ 1, n) /∈M or (m− 1, n) /∈M or

(m,n+ 1) /∈M or (m,n− 1) /∈M then
4 Add (m,n) to the heap;
5 end
6 end

that the phase of the border coefficients can be used directly
(i.e. no unwrapping is necessary). Depending on the situation,
the phase might be propagated from more than one border
coefficient, however the phases coming from distinct sources
are never combined.



6 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

(a) Spectrogram, a = 1 (b) a = 1, CdB = −57.02,
RdB = −22.93

(c) a = 16, CdB = −28.17,
RdB = −2.18

(d) a = 32, CdB = −24.06,
RdB = −1.21

Fig. 1: Spectrogram of a spoken word greasy (a). The absolute
phase differences of the STFT of the original and reconstructed
signal in the range [0, π] for varying time hop size a (b) (c)
(d). The errors CdB and RdB are introduced in Section V. The
phase difference was set to zero (white color) for coefficients
with the relative magnitude below −60 dB.

C. Connections to Phase Vocoder

In this section we discuss some connections between the
proposed algorithm and the phase vocoder [6] and conse-
quently with algorithms SPSI [22] and PU [23]. The phase
vocoder allows the signal duration to be changed by employing
non-equal analysis and synthesis time hop sizes. A pitch
change can be achieved by playing the signal at a sampling rate
adjusted by the ratio of the analysis and synthesis hop sizes.
In the synthesis, the phase must be kept consistent in order
not to introduce artifacts. In the phase reconstruction task, the
original phase is not available, but the basic phase behavior can
be yet exploited. For example, it is known that for a sinusoidal
component with a constant frequency the phase grows linearly
in time for all frequency channels the component influences
in the spectrogram. For these coefficients, the instantaneous
frequency (STFT phase derivative with respect to time (22))
is constant and the local group delay (STFT phase derivative
with respect to frequency (21)) is zero.

Algorithms SPSI and PU estimate the instantaneous fre-
quency in each spectrogram column (time frame) from the
magnitude by peak picking and interpolation. The instanta-
neous frequency determines phase increments for each fre-
quency channel m such that

φ(m,n) = φ(m,n− 1) + 2πam0/M, (31)

where m0 is the estimated, possibly non-integer instantaneous
frequency belonging to the interval

[
0, bM/2c

]
. This is ex-

actly what the proposed algorithm does in case of constant
sinusoidal components, except the instantaneous frequency
is determined from the DGT log-magnitude. Integration in
Alg. 1 performs nothing else than a cumulative sum of the
instantaneous frequency in the time direction.

The algorithm PU goes further and also employs an impulse
model. The situation is reciprocal to sinusoidal components
such that the phase changes linearly in frequency for all
coefficients belonging to an impulse component but the rate
is only constant for fixed n and it is inversely proportional to
the local group delay n0 − n such as

φ(m,n) = φ(m− 1, n) + 2πa(n− n0)/M, (32)

where an0 is the time index of the impulse occurrence. Again,
this is what the proposed algorithm does for coefficients
corresponding to impulses.

The advantage of the proposed algorithm over the other
two is that the phase gradient is computed from the DGT log-
magnitude such that it is available at every time-frequency
position without even analysing the spectrogram content. This
allows an arbitrary integration path which combines both the
instantaneous frequency and the local group delay according
to the magnitude ridge orientation. In the other approaches, the
phase time derivative can be only estimated in a vicinity of
sinusoidal components and, vice versa, the frequency deriva-
tive only in a vicinity of impulse-like events. Obviously, such
approaches will not cope well with deviations from the model
assumptions although careful implementation can handle mul-
tiple sinusoidal components with slowly varying instantaneous
frequencies and impulses with frequency-varying onsets. The
difficulty of the PU algorithm lies in detecting the onsets in
the spectrogram and separating the coefficients belonging to
the impulse-like component from the coefficients belonging to
sinusoidal components.

Figure 2 shows phase deviations achieved by algorithms
SPSI and PU and by the proposed algorithm PGHI. The
phase difference at the transient coefficients is somewhat
smoother for PU when compared to SPSI because of the
involved impulse model. PGHI produces almost constant phase
difference due to the adaptive integration direction. The setup
used in the example is the following: the length of the signal is
L = 8192 samples, time hop size a = 16, number of channels
M = 2048, time-frequency ratio of the Gaussian window is
λ = aM/L.

V. EXPERIMENTS

In the experiments, we use the normalized mean-squared
error to measure the performance

E(x,y) =
‖x− y‖2

‖x‖2
, EdB(x,y) = 20 log10E(x,y), (33)

where ‖.‖2 denotes the standard energy norm. The spectral
convergence [14] is defined as

C = E
(
svec, |Pĉvec|

)
, CdB = 20 log10 C, (34)



PRŮŠA et al.: A NON-ITERATIVE METHOD FOR RECONSTRUCTION OF PHASE FROM STFT MAGNITUDE 7

(a) Spectrogram (b) Beauregard et al. [22] (SPSI)

(c) Magron et al. [23] (PU) (d) Proposed (PGHI)

Fig. 2: Spectrogram of an excerpt form the glockenspiel signal
(a) and the absolute phase differences in the range [0, π] for
three different algorithms (b)(c)(d). The phase difference was
set to zero (white color) for coefficients with the relative
magnitude below −50 dB.

where P = F∗gFg̃ i.e. synthesis followed by analy-
sis. Other authors proposed a slightly different measure
E(ĉvec,Pĉvec)

2, termed normalised inconsistency measure
[10], which represents the normalised energy lost by the recon-
struction/projection. Such measures clearly do not accurately
reflect the actual signal reconstruction error R = E(f , f̂),
but they are independent of the phase shift. Some other
authors evaluate the algorithms using the signal to noise
ratio, which they define as SNR(x,y) = 1/E(x,y) and
SNRdB(x,y) = −EdB(x,y) respectively. Unfortunately, as
Fig. 1 and Fig. 2 show, the phase difference is usually far
from being constant when subsampling is involved (this holds
for any algorithm, even the iterative ones). Therefore, the time-
frames (i.e. individual short-time spectra) and even each fre-
quency bin within the frame might have a different phase shift,
causing the error R to be very high, even when the other error
measures are low and the actual perceived quality is good. An
interested reader can find sound examples demonstrating this
phenomenon at the accompanying webpage.

The testing was performed on the speech corpus database
MOCHA-TIMIT [43] consisting of recordings of 1 male and
1 female speakers (460 recordings for each, 61 minutes in
total). The sampling rate of all recordings is 16 kHz. The
Gabor system parameters used with this database (Fig. 3 and 5)
were: number of channels M = 1024, hop size a = 128,
time-frequency ratio of the Gaussian window λ = aM/L,
time support of the truncated Gaussian window and the other
compactly supported windows was M samples.

Next, we used the EBU SQAM database of 70 test sound
samples [44] recorded at 44.1 kHz. Only the first 10 seconds
of the first channel was used from the stereophonic recordings
to reduce the execution time to a reasonable value. The Gabor
system parameters used with this database (Fig. 4 and 6) were
the following: number of channels M = 2048, hop size a =
256, time-frequency ratio of the Gaussian window λ = aM/L,
time support of the truncated Gaussian window and of the
other compactly supported windows was M samples.

In the following Section V-A, we evaluate the performance
of the PGHI algorithm alone. Later in Section V-B, we evalu-
ate the performance of several iterative algorithms initialized
by the outcome of PGHI. In both cases, we will compare
the results with the SPSI [22] algorithm. Unfortunately, we
were not able to get good results with the PU [23] algorithm
consistently due to the imperfect onset detection and due to
the limitation of the impulse model and so did not include
it here. The implementation of SPSI has been taken from
http://anclab.org/software/phaserecon/ and it was modified to
fit our framework. The most prominent change has been the
removal of the alternating π and 0 phase modulation in the
frequency direction which is not present when computing the
transform according to (4).

The results for the PGHI algorithm were computed via a
two step procedure. In the first step Alg. 1 with tol = 10−1

was used, and in the second step, the algorithm was run again
with tol = 10−10 including steps from Alg. 2 while using the
result from the first step as known phase. This approach avoids
error spreading during the numerical integration and improves
the result considerably when compared to a single run with
either of the thresholds.

A. Comparison With Non-iterative Method

Figures 3 and 4 show box plots of CdB over entire databases
for the SPSI and the proposed algorithm PGHI. The proposed
algorithm very clearly outperforms the SPSI algorithm by
a large margin. The performance of the proposed algorithm
further depends on the choice of the window. While the
Gaussian window truncation introduces only a negligible
performance degradation, the choice of Hann or Hamming
windows increase the error by about 2 dB. For a detailed
comparison, please find the scores and sound examples for
the individual files from the EBU SQAM database using the
Gaussian window at the accompanying web page.

We can only provide a rough timing for the algorithms as
the actual execution time is highly signal dependent and our
implementations might be suboptimal. On a standard PC, the
execution time of PGHI was generally less than 1 second
for the 10 second excerpts from the SQAM database. The
SPSI algorithm was roughly 6–8 times faster. Our current
implementation of PGHI is however very slow for noise
signals.

B. Comparison with Iterative Methods

It is known that the iterative phase reconstruction algorithms
optimize a non-convex objective function and, therefore, the
result depends strongly on the initial phase estimate. In this
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Fig. 3: Box plot of C in dB for the MOCHA-TIMIT database.
The whiskers denote the minimum and maximum.
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PGHI (proposed) SPSI [22]

Fig. 4: Box plot of C in dB for the EBU SQAM database. The
whiskers denote the minimum and maximum.

section, we compare the effect of PGHI and SPSI initializa-
tions on the performance of the following iterative algorithms:
• The Griffin-Lim algorithm [9] (GLA).
• A combination of Le Roux’s modification of GLA [10]

using the on-the-fly truncated modified update and of
the fast version of GLA [11] with constant α = 0.99
(FleGLA). The projection kernel was always truncated
to size 2M/a − 1 in both directions. This combination
outperforms both algorithms [10] and [11] when used
individually.

• The gradient descend-like algorithm by Decorsiere et al.
[15] (lBFGS). Unfortunately, the lBFGS implementation
we use (downloaded from [45]) fails in some cases.

In the comparisons, we also include the following algorithm,
which, unfortunately, does not benefit from phase initialization
as it performs its own initial phase guess from the partially
reconstructed signal:
• Time-Frequency domain Real-Time Iterative Spectrogram

Inversion with Look-Ahead [13] (TF-RTISI-LA). The
number of the look-ahead frames was always M/a − 1
and an asymmetric analysis window was used for the
latest look-ahead frame.

Figures 5 and 6 show average C in dB over the MOCHA-
TIMIT and EBU SQAM databases respectively depending on
the number of iterations with SPSI initialization (solid lines)
and with PGHI initialization (dashed lines). In addition, the
scores and sound examples for individual files from the EBU
SQAM database using the Gaussian window can be found
at the accompanying web page. Graphs for the truncated
Gaussian window are not shown as they exhibit no visual

difference from the graphs for the full-length Gaussian win-
dow. Further, the lBFGS algorithm has been excluded from
the comparison using the EBU-SQAM database (Fig. 6); it
failed to finish for a considerable number of the excerpts. The
graphs show that PGHI provides a better initial phase estimate
than SPSI for all algorithms considered and the best overall
results are obtained when PGHI is combined with the FleGLA
and lBFGS algorithms. The performance gap is however less
prominent for non-Gaussian windows. That is to be expected
as the PGHI algorithm performs suboptimally. For the non-
Gaussian windows the FleGLA and the lBFGS algorithms give
almost equivalent results after 200 iteration for both types of
initializations.

In the tests, the execution time of the PGHI algorithm was
comparable to the execution time of 2–4 iterations of GLA
with the Gaussian window and to the execution time of 4–10
iterations for the compactly supported windows.
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Fig. 5: Comparison with the iterative algorithms, MOCHA-
TIMIT database.

C. Modified Spectrograms

The main application area of the phase reconstruction
algorithms is the reconstruction from modified spectrograms.
The spectrograms are modified in the complex-valued STFT
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Fig. 6: Comparison with the iterative algorithms, EBU SQAM
database.

domain. This could be done by multiplication which leads to
so-called Gabor filters [46], [47], [48] or by moving/copying
of contents. In general, such a modified spectrogram is no
longer a valid (consistent [10]) spectrogram, i.e. there is no
signal having such a spectrogram. Therefore the task is to
construct rather than reconstruct a suitable phase. Unfortu-
nately, it is neither clear for which spectrogram modifications
the equations (21) and (22) still hold nor how it does affect the
performance if they do not. Moreover, an objective comparison
of the algorithms becomes difficult as the error measures
chosen above become irrelevant.

Nevertheless, in order to get the idea of the performance of
the proposed algorithm acting on modified spectrograms, we
implemented phase vocoder-like pitch shifting (up and down
by 6 semitones) via changing the hop size [6], [49] using all
the algorithms to rebuild the phase. The synthesis hop size
a = 256 was fixed and the analysis hop size was changed
accordingly to achieve the desired effect. Sound examples for
the EBU SQAM database along with Matlab/GNU Octave
script generating them can be found at the accompanying web
page.

VI. CONCLUSION

A novel, non-iterative algorithm for the reconstruction of
the phase from the STFT magnitude has been proposed. The
algorithm is computationally efficient and its performance is
competitive with the state-of-the-art algorithms. It can also
provide a suitable initial phase for iterative algorithms.

As future work, it would be interesting to investigate
whether (simple) equations similar to (21) and (22) could
be found for non-Gaussian windows. Moreover, the effect
of the aliasing and spectrogram modifications on the phase-
magnitude relationship should be systematically explored. For
that we will extend Proposition 1 to a more general setting.
Ideally, we hope that a similar result could be possible for
α-modulation frames [50], [51] and warped time-frequency
frames [52], [53].

From the practical point of view, a drawback of the proposed
algorithm is the inability to run in real-time setting i.e. to pro-
cess streams of audio data in a frame by frame manner. Clearly,
the way how the phase is spread among the coefficients would
have to be adjusted. This was done in [25] where we present
a version of the algorithm introducing one or even zero frame
delay.

Further, please note that equations (21) and (22) hold “in the
other direction” as well; meaning they can be used to estimate
the magnitude given the phase. This property might be useful
in many applications since the phase-aware signal processing
is a promising field of research [54], [55].

ACKNOWLEDGEMENTS

The authors thank Pavel Rajmic and the anonymous review-
ers for their valuable comments.

REFERENCES

[1] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the
determination of the phase from image and diffraction plane pictures,”
Optik, vol. 35, pp. 237–246, 1972.

[2] E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: Exact and
stable signal recovery from magnitude measurements via convex pro-
gramming,” Communications on Pure and Applied Mathematics, vol. 66,
no. 8, pp. 1241–1274, 2013.
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