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Abstract

Signal analysis with classical Gabor frames leads to a fixed time-frequency
resolution over the whole time-frequency plane. To overcome the limitations
imposed by this rigidity, we propose an extension of Gabor theory that leads
to the construction of frames with time-frequency resolution changing over
time or frequency. We describe the construction of the resulting nonstation-

ary Gabor frames and give the explicit formula for the canonical dual frame
for a particular case, the painless case. We show that wavelet transforms,
constant-Q transforms and more general filter banks may be modeled in the
framework of nonstationary Gabor frames. Further, we present the results
in the finite-dimensional case, which provides a method for implementing
the above-mentioned transforms with perfect reconstruction. Finally, we
elaborate on two applications of nonstationary Gabor frames in audio signal
processing, namely a method for automatic adaptation to transients and an
algorithm for an invertible constant-Q transform.
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transform, Invertibility

1. Introduction

Redundant short-time Fourier methods, also known as Gabor analysis [1],
are widely used in signal processing applications. The basic idea is the anal-
ysis of a signal f by consideration of the projections 〈f, gτ,ω〉 of f onto time-
frequency atoms gτ,ω. The gτ,ω are obtained by translation of a unique proto-
type function over time and frequency: gτ,ω(t) = g(t−τ)e2πitω. This classical
construction leads to a signal decomposition with fixed time-frequency resolu-
tion over the whole time-frequency plane. The restriction to a fixed resolution
is often undesirable in processing signals with variable time-frequency char-
acteristics. Alternative decompositions have been introduced to overcome
this deficit, e.g. the wavelet transform [2], the constant-Q transform (CQT)
[3] or decompositions using filter banks [4], in particular based on perceptive
frequency scales [5]. Adaptation over time is considered in approaches such as
modulated lapped transforms [6], adapted local trigonometric transforms [7]
or (time-varying) wavelet packets [8].

Most of the cited work achieves flexible tilings of the time-frequency
plane, but efficient reconstruction from signal-adaptive, overcomplete time-
frequency transforms is rarely addressed. One exception is a recent approach
in [9], which is in fact a special case of the more general model considered in
the present paper. The wealth of existing approaches to fast adaptive trans-
forms underlines the need for flexibility arising from many applications. On
the other hand, the introduction of flexibility in a transform that is based on
accurate mathematical modeling causes technical complications that are not
always easy to overcome. We introduce an approach to fast adaptive time-
frequency transforms, that is based on a generalization of painless nonorthog-
onal expansions [10]. It allows for adaptivity of the analysis windows and the
sampling points. Since the resulting frames locally resemble classical Gabor
frames and share some of their structure, they are called nonstationary Gabor

frames. The corresponding transform is likewise referred to as nonstationary
Gabor transform (NSGT).

The central feature of painless expansions is the diagonality of the frame
operator associated with the proposed analysis system. This idea is used here
to yield painless nonstationary Gabor frames and will allow for both math-
ematical accuracy in the sense of perfect reconstruction (the frame operator
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is invertible) and numerical feasibility by means of an FFT-based imple-
mentation. The construction of painless nonstationary Gabor frames relies
on three intuitively accessible properties of the windows and time-frequency
shift parameters used.

1. The signal f of interest is localized at time- (or frequency-)positions
n by means of multiplication with a compactly supported (or limited
bandwidth, respectively) window function gn.

2. The Fourier transform is applied on the localized pieces f · gn. The
resulting spectra are sampled densely enough in order to perfectly re-
construct f · gn from these samples.

3. Adjacent windows overlap to avoid loss of information. At the same
time, unnecessary overlap is undesirable. In other words, we assume
that 0 < A ≤∑n∈Z |gn(t)|2 ≤ B <∞, a.e., for some positive A and B.

We will show that these requirements lead to invertibility of the frame oper-
ator and therefore to perfect reconstruction. Moreover, the frame operator
is diagonal and its inversion is straight-forward. Further, the canonical dual
frame has the same structure as the original one. Because of these pleas-
ant consequences following from the three above-mentioned requirements,
the frames satisfying all of them will be called painless nonstationary Gabor

frames and we refer to this situation as the painless case. Under applica-
tion of a Fourier transform to the signal of interest, our approach leads to
adaptivity in either time or frequency. The concept of this paper relies on
ideas introduced in [11], and presented at [12]. In the present paper all for-
mal proofs are given, the link to frame theory is provided, the possibility to
represent other analysis/synthesis systems with this approach is established,
the numerical issues are investigated and several applications are presented.

The rest of the article is organized as follows. We fix notation and review
preliminary results from Gabor and frame theory in Section 2. Section 3
introduces the construction of (painless) nonstationary Gabor frames in de-
tail and provides a proof for the frame property under the given conditions.
The calculation of the dual or tight frames is also explicitly given for sys-
tems adaptive in time or frequency, respectively. Section 4 then establishes
the details of implementation in a discrete and real-life setting and provides
examples together with a comparison of numerical efficiency with existing
approaches. We conclude, in Section 5 with a summary and a brief outlook
on future work.
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In the sense of reproducible research, [13], we provide all algorithms and
scripts to reproduce the results in this paper at the webpage http://univie.
ac.at/nonstatgab/. Please note that a nonstationary Gabor transform is
also included in the Linear Time Frequency Analysis Toolbox (LTFAT) v.1.0
[14, 15], a Matlab/Octave toolbox, which is freely available at http://ltfat.
sourceforge.net/.

2. Preliminaries

For an integrable function f , i.e. f ∈ L1(R), we denote its Fourier
transform Ff(ξ) = f̂(ξ) =

∫
R
f(t) e−2πiξtdt, with the usual extension to

L2(R), the space of square-integrable functions from R to C. The con-
volution of two functions f, g ∈ L1(R) is the function f ∗ g defined by
(f ∗ g)(t) =

∫
R
f(x)g(t − x) dx, again with the usual extension to L2(R).

It follows that F(f ∗ g) = f̂ · ĝ. We use the notation f(t) ≃ g(t) if there exist
constants C1, C2 > 0, such that C1 g(t) ≤ f(t) ≤ C2 g(t) for all t.

2.1. Frame Theory

We now give a short summary of frame theory on Hilbert spaces, first
introduced in [16]. A thorough discussion can be found in [17] or [18].

A sequence (ψl)l∈I in the Hilbert space H is called a frame, if there exist
positive constants A and B (called lower and upper frame bounds, respec-
tively) such that

A‖f‖2 ≤
∑

l∈I
|〈f, ψl〉|2 ≤ B‖f‖2 ∀f ∈ H, (1)

i.e.
∑

l∈I |〈f, ψl〉|2 ≃ ‖f‖2. If A = B, then (ψl)l∈I is a tight frame. By
C : H → ℓ2, we denote the analysis operator defined by (Cf)l = 〈f, ψl〉. The
adjoint of C∗ of C is the synthesis operator C∗(cl) =

∑
l clψl. The frame

operator is Sf = C∗Cf =
∑

l〈f, ψl〉ψl, hence 〈Sf, f〉 = ‖Cf‖2ℓ2.
The boundedness and invertibility of S is equivalent to the existence of

frame bounds 0 < A,B < ∞ in the frame inequality (1), as well as to the
existence of dual frames, which can be used for reconstruction. In particular,
the canonical dual frame (ψ̃l), is found by applying the inverse of S to the
original frame elements, i.e. ψ̃l = S−1ψl for all l. For all f ∈ H we then have
the following reconstruction formulas:

f =
∑

l

〈f, ψl〉ψ̃l =
∑

l

〈f, ψ̃l〉ψl.
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For tight frames, the frame operator reduces to S = AI, where I denotes the
identity operator, and therefore S−1 = 1

A
I. The canonical tight frame (ψ̊l) is

obtained by applying S− 1
2 to the frame elements, i.e. ψ̊l = S− 1

2ψl for all l.

2.2. Gabor Theory

Recall that for any nonzero function g ∈ L2(R) (the window), the short-

time Fourier transform (STFT) of a signal f ∈ L2(R) is defined as Vg (f) (τ, ω) =
〈f,MωTτg〉, using the translation operator Tτf (t) = f (t− τ) and the mod-

ulation operator Mωf (t) = f (t) e2πiωt. In L2(R), we have

Vg (f) (τ, ω) =
∫

R

f(t) g(t− τ) e−2πiωtdt.

For a non-zero window function g and parameters a, b > 0, the set of
time-frequency shifts of g

G(g, a, b) = {MbmTang : m,n ∈ Z}

is called a Gabor system [19]. Moreover, if G(g, a, b) is a frame, it is called
a Gabor frame and the associated frame operator is denoted by Sg,a,b. In
the succeeding sections, where the dependence of the frame operator on the
window g and the parameters a, b is clear, we simply denote the frame op-
erator by S. Note that the Gabor analysis coefficients are sampling points
of the STFT of f with window g at the time-frequency points (an, bm), i.e.
Vg (f) (an, bm) = {〈f,MbmTang〉}m,n.

A central property of Gabor frames is the fact that the dual frame of a
Gabor frame is again a Gabor frame, generated by the dual window g̃ = S−1g
and the same lattice, i.e. the set of time-frequency points {(an, bm) |m,n ∈ Z}.
Note that the property that the dual system is again a system with the same
structure, is a particular property of Gabor frames, shared by nonstationary
Gabor frames in the painless setting considered in the present paper. For a
more detailed introduction to Gabor analysis, see [1] or [20].

In the finite discrete case, we take the Hilbert space H to be CL. For
a good introduction to Gabor analysis in this setting, see [21]. We shall
restrict the lattice parameters a and b to factors of L such that the numbers
N = L

a
andM = L

b
are integers. We regard all vectors as periodic, so discrete

translation is a cyclic operator. Therefore the discretization of time-shift and
modulation is given by

Tnx = (xL−n, xL−n+1, . . . , x0, x1, . . . , xL−n−1)
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and
Mmx =

(
x0 ·W 0

L, x1 ·W 1·m
L , . . . , xL−1 ·W (L−1)m

L

)

with WL = e
2πi
L , respectively. We will consider the Gabor system

G(g, a, b) = {MbmTang : n = 0, . . . , N − 1;m = 0, . . . ,M − 1} ,

which is a collection of M · N vectors in CL. Obviously, to fulfill the frame
conditions (1), we need at least M ·N ≥ L.

2.3. Wavelet Theory

As we will see below, nonstationary Gabor frames may be used to con-
struct wavelet frames. We briefly sketch the continuous wavelet transform.
Let ψ ∈ L2(R) and (α, β) ∈ R∗

+ × R. We define the wavelet system by

ψα,β(t) =
1√
α
ψ

(
t− β

α

)
= TβDαψ, (2)

where Dα denotes the dilation operator given by Dαf(t) =
1√
α
f( t

α
).

The wavelet transform is then defined as

Wψf(α, β) = 〈f,TβDαψ〉 =
(
f ∗DαIψ

)
(β), (3)

where I denotes the involution Ig(t) = g(−t).
If ψ is localized around τ0, then ψα,β(t) is centered at α · τ0 + β. The

frequency center is at η/α, where η is the center of ψ̂.

3. Construction of nonstationary Gabor frames

3.1. Resolution changing over time

As opposed to standard Gabor analysis, where time translation is used to
generate atoms, the setting of nonstationary Gabor frames allows for chang-
ing, hence adaptive, windows in different time positions. Then, for each time
position, we build atoms by regular frequency modulation. Using a set of
functions {gn}n∈Z in L2(R) and frequency sampling step bn, for m ∈ Z and
n ∈ Z, we define atoms of the form:

gm,n(t) = gn(t)e
2πimbnt = Mmbngn(t),
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implicitly assuming that the functions gn are well-localized and centered
around time-points an. This is similar to the standard Gabor scheme, how-
ever, with the possibility to vary the window gn for each position an. Thus,
sampling of the time-frequency plane is done on a grid which is irregular over
time, but regular over frequency at each temporal position.

Figure 1 shows an example of such a sampling grid. Note that some
results exist in Gabor theory for semi-regular sampling grids, as for example
in [22]. Our study uses a more general setting, as the sampling grid is in
general not separable and, more importantly, the window can evolve over
time. To get a first idea of the effect of nonstationary Gabor frames, the
reader may take a look at Figure 2 and Figure 3, which show regular Gabor
transforms and a nonstationary Gabor transform of the same signal. Note
that the NSGT in Figure 3 was adapted to transients and the components
are well-resolved.
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Figure 1: Example of a sampling grid of the time-frequency plane when building a decom-
position with time-frequency resolution evolving over time

In the current situation, the analysis coefficients may be written as

cm,n = 〈f,Mmbngn〉 = ̂(f · gn)(mbn), m, n ∈ Z.

Remark 1. If we set gn(t) = g(t− na) for a fixed time-constant a and bn = b
for all n, we obtain the case of classical painless non-orthogonal expansions
for regular Gabor systems introduced in [10].
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Figure 2: Glockenspiel (Example 1). Gabor representations with short window (11.6 ms),
resp. long window (185.8 ms).
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Figure 3: Glockenspiel (Example 1). Regular Gabor representation with a Hann window
of 58 ms length and a nonstationary Gabor representation using Hann windows of varying
length.
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3.2. Resolution changing over frequency

An analog construction in the frequency domain leads to irregular sam-
pling over frequency, together with windows featuring adaptive bandwidth.
Then, sampling is regular over time. An example of the sampling grid in
such a case is given in Figure 4.

In this case, we introduce a family of functions {hm}m∈Z of L2(R), and
for m ∈ Z and n ∈ Z, we define atoms of the form:

hm,n(t) = hm(t− nam). (4)

Therefore ĥm,n(ν) = ĥm(ν) · e−2πinamν and the analysis coefficients may be
written as

cm,n = 〈f, hm,n〉 = 〈f̂ ,F(Tnamhm)〉 = F−1
(
f̂ · ĥm

)
(nam).

Hence, the situation is completely analog to the one described in the previous
section, up to a Fourier transform.
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Figure 4: Example of a sampling grid of the time-frequency plane when building a decom-
position with time-frequency resolution changing over frequency

In practice we will choose each function hm as a well localized band-pass
function with center frequency bn.

3.2.1. Link between nonstationary Gabor frames, wavelet frames and filter-

banks:

To obtain wavelet frames, the wavelet transform in (2) is sampled at
sampling points (βn, αm). A typical discretization scheme [23] is (nβ0, α

m
0 ).
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Then, the frame elements are ψm,n(t) = Tnβ0Dαm
0
ψ(t). Comparing this ex-

pression to (4) and setting hm = Dm
α0
ψ and am = β0, we see that a wavelet

frame with this discretization scheme corresponds to a nonstationary Gabor
transform.

Another possibility for sampling the continuous wavelet transform [2] uses
α = αm0 and β = nβ0α

m
0 . Again, we obtain a correspondence to nonstation-

ary Gabor frames by setting hm = Dm
α0
ψ and am = β0 · αm0 .

Beyond the setting of wavelets, any filter bank [23], even with non-
constant down-sampling factorsDm, can be written as a nonstationary Gabor
frame. A filter bank is a set of time-invariant, linear filters hm, i.e. Fourier
multipliers. The response of a filter bank for the signal f and sampling period
T0 is given (in the continuous case) by

cm,n = (f ∗ hm) (nDmT0) =

∫

R

f(t)hm (nDmT0 − t) dt = 〈f, hm,n〉 ,

where hm,n(t) = h (nDmT0 − t). Setting hm = I hm and choosing am =
DmT0 this construction is realized with nonstationary Gabor frames using
(4). If the filters are band-limited and the down-sampling factors are small
enough, then the conditions for the painless case are met and the correspond-
ing reconstruction procedure can be applied.

3.3. Invertibility of the frame operator and reconstruction

In this central section we give the precise conditions under which painless
nonstationary Gabor frames are constructed. The first two basic conditions,
namely compactly supported windows and sufficiently dense frequency sam-
pling points, lead to diagonality of the associated frame operator S, as de-
fined in Section 2.1. The third condition, the controlled overlap of adjacent
windows, then leads to boundedness and invertibility of S. The following
theorem generalizes the results given for the classical case of painless non-
orthogonal expansions [10, 20].

Theorem 1. For every n ∈ Z, let the function gn ∈ L2(R) be compactly

supported with supp(gn) ⊆ [cn, dn] and let bn be chosen such that dn−cn ≤ 1
bn
.

Then the frame operator

S : f 7→
∑

m,n

〈f, gm,n〉gm,n
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of the system

gm,n(t) = gn(t) e
2πimbnt, m ∈ Z and n ∈ Z,

is given by a multiplication operator of the form

Sf(t) =

(∑

n

1

bn
|gn(t)|2

)
f(t).

Proof. Note that,

〈Sf, f〉 =
∑

n

∑

m

∣∣
∫

R

f(t) gn(t) e
−2πimbntdt

∣∣2

=
∑

n

∑

m

∣∣
∫ dn

cn

f(t) gn(t) e
−2πimbntdt

∣∣2,

due to the compact support property of the gn. Let In = [cn, cn + b−1
n ] for

all n and χI denote the characteristic function of the interval I. Taking into
account the compact support of gn again, it is obvious that

f gn = χIn
∑

l

Tlb−1
n
(fgn),

with the b−1
n -periodic function

∑
lTlb−1

n
(f gn). Hence, withWm,n(t) = e−2πimbnt,

∣∣
∫ dn

cn

f(t) gn(t)Wm,n(t) dt
∣∣2 =

∣∣
∫

In

f(t) gn(t)Wm,n(t) dt
∣∣2,

=
∣∣〈f gn,Wm,n〉L2(In)

∣∣2

and applying Parseval’s identity to the sum over m yields

〈Sf, f〉 =
∑

n

∑

m

|〈f gn,Wm,n〉L2(In)|2

=
∑

n

1

bn
‖f gn‖2 =

〈∑

n

1

bn
|gn|2f, f

〉
.

While in general, the inversion of S can be numerically unfeasible, in the
special case described in Theorem 1, the invertibility of the frame operator
is easy to check and inversion is a simple multiplication.
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Corollary 1. Under the conditions given in Theorem 1, the system of func-

tions gm,n forms a frame for L2(R) if and only if
∑

n
1
bn
|gn(t)|2 ≃ 1. In this

case, the canonical dual frame elements are given by:

g̃m,n(t) =
gn(t)∑
l
1
bl
|gl(t)|2

e2πimbnt, (5)

and the associated canonical tight frame elements can be calculated as:

g̊m,n(t) =
gn(t)√∑
l
1
bl
|gl(t)|2

e2πimbnt.

Remark 2. The optimal lower and upper frame bounds are explicitly given
by Aopt = essinf

∑
n

1
bn
|gn(t)|2 and Bopt = esssup

∑
n

1
bn
|gn(t)|2.

We next state the results of Theorem 1 and Corollary 1 in the Fourier
domain. This is the basis for adaptation over frequency.

Corollary 2. For every m ∈ Z, let the function hm be band-limited to

supp(ĥm) = [cm, dm] and let am be chosen such that dn − cn ≤ 1
am

. Then

the frame operator of the system

hm,n(t) = hm(t− nam) , m ∈ Z, n ∈ Z

is given by a convolution operator of the form

〈Sf, f〉 = 〈F−1
(∑

m

1

am
|ĥm|2

)
∗ f, f〉 (6)

for f ∈ L2(R). Hence, the system of functions hm,n forms a frame of L2(R)

if and only if ∀ν ∈ R,
∑

m
1
am

|ĥm(ν)|2 ≃ 1. The elements of the canonical

dual frame are given by

h̃m,n(t) = TnamF−1

(
ĥm∑
l
1
al
|ĥl|2

)
(t) (7)

and the canonical tight frame is given by

h̊m,n(t) = TnamF−1


 ĥm√∑

l
1
al
|ĥl|2


 (t). (8)
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Proof. We deduce the form of the frame operator in the current setting from
the proof of Theorem 1 by setting

〈Sf, f〉 = 〈Ŝf, f̂〉 =
∑

m,n

|〈f̂ , ĥm,n〉|2

and the rest of the corollary is equivalent to Corollary 1.

Remark 3. Classical Gabor frames are intimately related to modulation
spaces, see [24] for an extensive discussion and relevant references. The
characterization of modulation spaces depends on the joint time-frequency
localization of the analysis window. Painless nonstationary Gabor frames
characterize modulation spaces, if, in addition to compactness in one domain
(time or frequency), the windows gk exhibit a uniform decay in the sense of
time-frequency molecules, see [25, Theorem 22], i.e., letting ξ = (ak, l/bk),
k, l ∈ Z, we require |Vϕgk(z)| ≤ C(1 + |z − ξ|)−r for some r > 2. Then,
the corresponding frame operator is invertible on all modulation spaces Mp,
1 ≤ p ≤ ∞, and the ℓp-norm of the corresponding coefficient sequence is
equivalent to the modulation space norm.

Remark 4. As mentioned in Section 3.2.1 the NSGT is linked to wavelet
frames. In the painless case it is possible to construct a dual sequence which
has the same structure. For wavelets this is also possible, see e.g. [26, 27],
where non-canonical duals are constructed.

In a similar way as modulation spaces are linked to the Gabor transform,
Besov spaces are related to wavelet systems, see e.g. [28]. Also, Sobolev
spaces can be linked to the wavelet transform [29]. Nonstationary Gabor
frames can also be used to characterize Besov and Sobolev spaces, with some
additional assumptions. Details will be reported elsewhere.

4. Discrete Finite Nonstationary Gabor Frames

4.1. Discrete, time-adaptive Gabor transform

For the practical implementation, the equivalent theory may be developed
in a finite discrete setting using the Hilbert space CL. Since this is largely
straight-forward from simple matrix multiplication, we only state the main
result. Given a set of functions {gn}n∈{0,...,N−1}, a set of integers (number of
frequency samples for each time position) {Mn}n∈{0,...,N−1} associated with
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the set of real values {bn = L
Mn

}n∈{0,...,N−1}, the discrete, nonstationary Gabor
system is given by

gm,n[k] = gn[k] · e
2πimbnk

L = gn[k] ·Wmbnk
L .

for n = 0, . . . , N − 1, m = 0, . . . ,Mn − 1 and all k = 0, . . . L− 1. Note that
in practice, gm,n[k] will have zero-values for most k, allowing for efficient

FFT-implementation: since Mn = L
bn
, we have gm,n[k] = gn[k] · e

2πimk
Mn and

the nonstationary Gabor coefficients are given by an FFT of length Mn for
each gn.

The number of elements of {gm,n} is P =
∑N−1

n=0 Mn. Let G be the L×P
matrix such that its p-th column is gm,n, for p = m+

∑n−1
k=0 Mk.

Corollary 3. The frame operator S = G·G∗ is an L×L matrix with entries:

Sk,j =
∑

n∈N(k−j)

Mn gn[k] gn[j]

where Np = {n ∈ [0, N − 1] | p = 0 mod Mn} for p ∈ [−L, L]. Therefore, if

appropriate support conditions are met, S is a diagonal matrix.

4.1.1. Numerical complexity

Assuming that the windows gn have support of length Ln, let M =
maxn {Mn} be the maximum FFT-length. We consider the painless case
where Ln ≤Mn ≤M . The number of operations is

1. Windowing: Ln operations for the n-th window.

2. FFT: O (Mn · log (Mn)) for the n-th window.

Then the number of operations for the discrete NSGT is

O
(
N−1∑

n=0

Mn · log (Mn) + Ln

)
= O (N · (M log (M) +M))

= O (N · (M log (M)))

Similar to the regular Gabor case, the number of windows N will usually
depend linearly on the signal length L while the maximum FFT-length M is
assumed to be independent of L. In that case, the discrete NSGT is a linear
cost algorithm.
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For the construction of the dual windows in the painless case, the com-
putation involves multiplication of the window functions by the inverse of
the diagonal matrix S and results in O(2

∑N−1
n=0 Ln) = O(N ·M) operations.

Lastly, the inverse NSGT has numerical complexity O (N · (M log (M))), as
in the NSGT, since it entails computing the IFFT of each coefficient vector,
multiplying with the corresponding dual windows and evaluating the sum.

Technical framework: All subsequently presented simulations were done
in MATLAB R2009b on a 2 Gigahertz Intel Core 2 Duo machine with 2 Gi-
gabytes of RAM running Kubuntu 9.04. The CQTs were computed using the
code published with [30], available for free download at http://www.elec.
qmul.ac.uk/people/anssik/cqt/. The constant-Q nonstationary Gabor
transform (CQ-NSGT) algorithms are available at http://univie.ac.at/
nonstatgab/.

4.1.2. Application: automatic adaptation to transients

In real-life applications, NSGT has the potential to represent local signal
characteristics, e.g. transient sound events, in a more appropriate way than
pre-determined, regular transform schemes. Since the appropriateness of a
representation depends on the specific application, any adaptation procedure
must be designed specifically. For the implementation itself, however, two
observations generally remain true: First, the general nonstationary frame-
work needs to be restricted to a well defined set of choices. Second, some
measure is needed to determine the most suitable of the possible choices.
For example, in the case of a sparsity measure, the most sparse representa-
tion will be chosen. To show that good results are achieved even when using
quite simple adaptation methods, we describe a procedure suitable for signals
consisting mainly of transient and sinusoidal components. The adaptation
measure proposed is based on onset detection, i.e. estimating where tran-
sients occur in the signal. The transform setting is what we call scale frames:
the analysis procedure uses a single window prototype and a countable set
of dilations thereof.

For evaluation, the representation quality is measured by comparison of
the number of representation coefficients leading to certain root mean square
(RMS) reconstruction errors, for both NSGT and regular Gabor transforms.
The results are especially convincing for sparse music signals with high energy
transient components. Other possible adaptation methods might be based
on time-frequency concentration, sparsity or entropy measures [9],[31],[32].
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Scale frames: In the following paragraphs, we propose a family of nonsta-
tionary Gabor frames that allows for exponential changes in time-frequency
resolution along time positions. To avoid heavy notation and since the for-
malism necessary for the discrete, finite case could obscure the principal idea,
we describe the continuous case construction. Suitable standard sampling
then yields discrete, finite frames with equivalent characteristics.

The basic idea is to build a sequence of windows gn from a single, contin-
uous window prototype g with support on an interval of length 1 in such a
way that the resulting gn satisfy Corollary 1. The window sequence will be
unambiguously determined by a sequence of scales. Once this scale sequence
is known, it is a simple task to choose modulation parameters bn satisfying
the necessary conditions.

As a scale sequence, we allow any integer-valued sequence {sn}n∈Z such
that |sn − sn−1| ∈ {0, 1}, where the latter restriction is set in order to avoid
sudden changes of window length. Then, gn is, up to translation, given by a
dilation of the prototype g:

D2sn (g)(t) =
√
2−sng(2−snt)

This implies that a change of scale from one time step to the next corresponds
to the use of a window either half or twice as long. More precisely, for every
time step n, set s = min{sn−1, sn} and fix an overlap of 2/3 · 2s, if sn 6= sn−1

and 1/3 · 2s, if sn = sn−1. Explicitly,

gn = TnD2sn (g),

with recursively defined time shift operators Tn given by

T0 = T0, Tn =

{
T2s5/6Tn−1, if sn 6= sn−1

T2s+1/3Tn−1, else.

Defining the time shifts in this manner, we achieve exactly the desired overlap
as illustrated in Figure 5.

By construction, each gn has non-zero overlap with its neighbors gn−1 and
gn+1 and at any point on the real line, at most two windows are non-zero.
After performing a preliminary transient detection step, as explained before,
the construction of the adapted frame reduces to the determination of a scale
sequence.

In the subsequent figures and experiments we used the Hann window as
prototype, but other window choices are possible. The described concept can
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Figure 5: Illustration of scale frame overlaps and time shifts.

easily be generalized by admitting other overlap factors and scaling ratio than
the ones specified above. The parameters have to be chosen with some care,
though. Otherwise the resulting frames might be badly conditioned, with
a big or even infinite condition number B

A
, caused by accumulation points

for the time shifts or gaps between windows. A more detailed description of
general and discrete scale frames is beyond the scope of this article and will
be part of a future contribution.

Frame construction from a sequence of onsets: In this paragraph, we
assume that the signals of interest are mainly comprised of transient and
sinusoidal components, an assumption met, e.g. by piano music. The in-
stant a piano key is hit corresponds to a percussive, transient sound event,
directly followed by harmonic components, concentrated in frequency. An
intuitive adaptation to signals of this type would use high time resolution at
the positions of transients. This corresponds to applying minimal scale at
the transients and steadily increasing the scale with the distance from the
closest transient. The transients’ positions can be determined, e.g. by so-
called onset detection procedures [33] which, if used carefully, work to a high
degree of accuracy. Once the transient positions are known, the construction
of a corresponding scale frame yields good nonstationary representations for
sufficiently sparse signals.

Application of onset-based scale frames: We applied the procedure
proposed above to various signals, mainly piano music. For this presentation,
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we selected three examples, all of them sampled at 44.1 kHz and consisting
of a single channel. Some more examples and corresponding results as well
as the source sound files can be found on the associated web-page http://

univie.ac.at/nonstatgab/.

• Example 1: The widely used Glockenspiel signal shown in Figure 3.

• Example 2: An excerpt from a solo jazz piano piece performed by Her-
bie Hancock, characterized by its calmness and varied rhythmical pat-
tern, resulting in irregularly spaced low-energy transients. See Figure
6.

• Example 3: A short excerpt of György Ligeti’s piano concert. With
highly percussive onsets in the piano and Glockenspiel voices and some
orchestral background, this is the most polyphonic of our examples.
See Figure 7.

For comparison, the plots in Figures 3, 6 and 7 also show standard Gabor
coefficients with comparable (average) window overlap. A Hann window of
2560 samples length was chosen for the computation of regular Gabor trans-
forms. The comparison shows that for the three signals, the NSGT features
a better concentration of transient energy than a regular Gabor transform,
while keeping, or even improving, frequency resolution.

Efficiency in sparse reconstruction: The onset detection procedure and
a subsequent scale frame analysis were applied, along with a regular Gabor
decomposition, to the Glockenspiel and Ligeti signals. As a test of the rep-
resentations’ sparsity, the signals were synthesized from their corresponding
coefficients, modified by hard thresholding followed by reconstruction using
the canonical dual frame. Then the numbers of largest magnitude coefficients
needed for a certain relative root mean square (RMS) reconstruction error
for each representation were compared. The RMS error of a vector f and its
reconstruction frec is given by

RMS(f, frec) =

√∑L−1
k=0 |f [k]− frec[k]|2∑L−1

k=0 |f [k]|2
.

All transforms are of redundancy about 5
3
. The results for NSGT and differ-

ent regular Gabor transform schemes are listed in Figure 8. On the Glock-
enspiel signal the NSGT method performs vastly better than the ordinary
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Figure 6: Hancock (Example 2). Regular and nonstationary Gabor representations.
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Gabor transform. For Ligeti, the differences are not as significant, but still
the NSGT-based procedure shows better overall results.
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Figure 8: RMS error in sparse representations of Example 1 and Example 3. Parameters
(in parentheses) are hop size and window length in the regular case (GT) or shortest
window length and number of scales for the nonstationary case (NSGT). The values are
estimated to be the optimal numbers of coefficients necessary to achieve reconstruction
with less than the respective error.

Further experiments and a more exhaustive discussion of the parameters
used in the experiments, can be found on the web-page http://univie.

ac.at/nonstatgab/. Along them, examples of regular and nonstationary
reconstructions from a specified amount of coefficients can be found, so the
reader might get a subjective impression of perceptive reconstruction quality.
In conclusion, the experiments show that for real music signals, NSGT can
provide a sparser representation than regular Gabor transforms, admitting
reasonable reconstruction error.

4.2. Implementation of a discrete, frequency-adaptive Gabor Transform

Since our construction of Gabor frames with adaptivity in the frequency
domain relies on the fact that analysis windows hm possess compact band-
width, an FFT-based implementation is highly efficient. We take the input
signal’s Fourier transform and treat the procedure in complete analogy to the
situation developed for time-adaptive transforms, i.e. hm,n[k] = Tnamhm[k]

and ĥm,n[j] = M−nam ĥm[j].
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As observed in Section 3.2.1, we are able to obtain wavelet frames using
Gabor frames that exhibit nonstationarity in the frequency domain. More-
over, we may design general transforms with flexible frequency resolution,
such as a constant-Q transform. While various other adjustments (e.g. Mel-
or Bark-scaled transforms) are feasible, we will focus our discussion on the
constant-Q case. To the best knowledge of the authors, the approach to im-
plement the constant-Q transform directly in the frequency domain by means
of FFT is new in audio processing.

Remark 5. Note that for real-valued signals the symmetry of their FFT can
be exploited to further reduce the computational effort. We particularly refer
to the LTFAT routines filterbankrealdual.m and filterbankrealtight.m.

4.2.1. Application: an invertible constant-Q transform

The constant-Q transform (CQT), introduced by Brown [34], transforms
a time signal into the time-frequency domain, where the center frequencies
of the frequency bins are geometrically spaced. Since the Q-factor (the ratio
of the center frequencies to the window’s bandwidth) is constant, the repre-
sentation allows for a better frequency resolution at lower frequencies and a
better time resolution at the higher frequencies. This is sometimes prefer-
able to the fixed resolution of the standard Gabor transform, for which the
frequency bins are linearly spaced. In particular, this kind of resolution is
often desired in the analysis of musical signals, since the transform can be set
to coincide the temperament, e.g. semitone or quarter tone, used in Western
music.

The originally introduced constant-Q transform, however, is not invertible
and is computationally more intensive than the DFT. A computationally
more efficient approach was presented in the sequel [3]: for the nth time
slice of the signal f , the coefficient vector cm,n, equal to inner product of the
signal f with the time-limited window hm,n is computed in the Fourier side

via 〈f̂ , ĥm,n〉. This approximate computation takes advantage of the sparsity
of the frequency domain kernel or spectral kernel. In contrast, we compute the
coefficient vector for each frequency bin, making use of band -limited window
functions.

Perfect reconstruction wavelet transforms with rational dilation factors
were proposed in [35]. Since they are based on iterated filter banks, these
methods are computationally too expensive for long, real-life signals, when
high Q-factors, such as 12-96 bins per octave, are required.
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In [30], Klapuri and Schörkhuber presented a computation of the CQT
that shows improved efficiency and flexibility compared to the method pro-
posed in [3], among others. However, the approximate inversion introduced
in [30] still gives an RMS error of around 10−3. The lack of perfect invertibil-
ity prevents the convenient modification of CQT-coefficients with subsequent
resynthesis required in complex music processing tasks such as masking or
transposition. By allowing adaptive resolution in frequency, we can construct
an invertible nonstationary Gabor transform with a constant Q-factor on the
relevant frequency bins.

Setting: For the frame elements in the transform, we consider functions
hm ∈ CL, m = 1, . . . ,M having center frequencies (in Hz) at ξm = ξmin2

m−1
B ,

as in the CQT. Here, B is the number of frequency bins per octave, and ξmin

and ξmax are the desired minimum and maximum frequencies, respectively.
In the experiments, we restrict ξmax to be less than the Nyquist frequency and
there should exist anM ∈ N satisfying ξmax ≤ ξmin2

M−1
B < ξs/2, where ξs de-

notes the sampling frequency. In this case, we takeM = ⌈B log2(ξmax/ξmin)+
1⌉, where ⌈z⌉ is the smallest integer greater than or equal to z. While in the
CQT no 0-frequency is present, the NSGT provides all necessary freedom
to use additional center frequencies. Since the signals of interest are real-
valued, we put filters at center frequencies beyond the Nyquist frequency
in a symmetric manner. This results in the following values for the center
frequencies:

ξm =





0, m = 0

ξmin2
m−1
B , m = 1, . . . ,M

ξs/2, m =M + 1

ξs − ξ2M+2−m, m =M + 2, . . . , 2M + 1.

For the corresponding bandwidth Ωm of hm, we set Ωm = ξm+1 − ξm−1,
for m = 1, . . . ,M , and Ω0 = 2ξ1 = 2ξmin. By construction, these result in
a constant Q-factor Q = (2

1
B − 2−

1
B )−1 for m = 2, . . . ,M − 1. And we can
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write each Ωm as follows:

Ωm =





2ξmin, m = 0

ξ2, m = 1, 2M + 1

ξm/Q, m = 2, . . . ,M − 1

(ξs − 2ξM−1)/2, m =M,M + 2

ξs − 2ξM , m =M + 1

ξ2M+2−m/Q, m =M + 3, . . . , 2M.

If we use a Hann window ĥ, supported on [−1/2, 1/2], then we can obtain

each hm via ĥm[j] = ĥ((j ξs
L
− ξm)/Ωm), where j = 0, . . . , L − 1. Letting

am ≤ ξs
Ωm

, we define hm,n by their Fourier transform ĥm,n = M−nam ĥm,

n = 0, . . . , ⌊ L
am

⌋ − 1. Figure 9 illustrates the time-frequency sampling grid
of the set-up, where the center frequencies are geometrically spaced and
sampling points regularly spaced.

b b b b b b

b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

ξ

t

ξm−1

ξm

ξm+1

am
︷ ︸︸ ︷

Figure 9: Exemplary sampling grid of the time-frequency plane for a constant-Q nonsta-
tionary Gabor system.

The support conditions on ĥm imply that the sum σ =
∑2M+1

m=0
L
am

∣∣ĥm
∣∣2

is finite and bounded away from 0. From Section 3.3, the frame operator is
therefore invertible and we can apply Corollary 2.

Note that we consider the bandwidth to be the support of the window in
frequency. This makes sense in the considered painless case. Very often, see
e.g. [30], the bandwidth is taken as the width between the points, where the
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filter response drops to half of the maximum, i.e. the −3dB -bandwidth. This
definition would also make sense in a non-compactly supported case. For the
chosen filters, Hann windows, the Q-factor considering the −3dB -bandwidth
is just double of the one considered above.

We see in Figure 10 the standard Gabor transform spectrogram and the
constant-Q NSGT spectrogram of the Glockenspiel signal, the latter being
very similar to the CQT spectrogram obtained from the original algorithm
[34] but with the additional property that the signal can be perfectly re-
constructed from the coefficients. Figures 11 and 12 compare the standard
Gabor transform spectrogram and the constant-Q NSGT spectrogram of two
additional test signals, both sampled at 44.1 kHz:

• Example 4: A recording of Bach’s Little Fugue in G Minor, BWV578
performed by Christopher Herrick on a pipe organ. Low frequency
noise and the characteristic structure of pipe organ notes are resolved
very well by a CQT. See Figure 11.

• Example 5: An excerpt from a duet between violin and piano. Written
by John Zorn and performed by Sylvie Courvoisier and Mark Feldman,
the sample is made up of three short segments: A frantic sequence of
violin and piano notes, a slow violin melody with piano backing and an
inharmonic part with chirp component. See Figure 12.

Efficiency: The computation time of the nonstationary Gabor transform
was found to be better than a recent fast CQT implementation [30], as seen
in Figure 13. The two plots show mean values for computation time in sec-
onds and the corresponding variance over 50 iterations, with varying window
lengths and number of frequency bins, respectively. The outlier, drawn in
gray, in Figure 13 (left) at the prime number 600569 illustrates dependence
of the current CQ-NSGT implementation on the signal length’s prime factor
structure, analogous to FFT.

It is again reasonable to assume that the number of filters is bounded,
independently of L, while the number of temporal points depend on L. As
the role of M and N is switched in the assumption in Section 4.1.1 for
the complexity, we arrive at a complexity of O (L logL). This is also the
complexity of the FFT of the whole signal. So the overall complexity of
the frequency-dependent nonstationary Gabor transform is O (L logL). The
advantage of the method in terms of computational efficiency thus decreases
as longer signals are considered.
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Figure 10: Glockenspiel (Example 1). Regular Gabor, constant-Q nonstationary Gabor
and constant-Q representations of the signal. The transform parameters were B = 48 and
ξmin = 200 Hz.

We note that at this point, since the windows used are band-limited,
the current procedure is not suitable for real-time processing, despite its
efficiency. The next step would be to process the incoming samples in a
piecewise manner, using only a single family of frame elements for signals of
arbitrary length. This entails working on finite, discrete parts of the given
signal, thus considering the Fourier-transformed versions of vectors f ·h ∈ CL,
where h denotes some function of length L ≪ L. This window, together with
the frame elements, will be designed to minimize undesired effects that stem
from the cutting of the signal. Details of this piecewise processing, as well
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Figure 11: Bach’s Little Fugue (Example 4). Regular and constant-Q nonstationary Gabor
representations of the signal. The transform parameters were B = 48 and ξmin = 75 Hz.
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Figure 12: Violin and piano duet (Example 5). Regular and constant-Q nonstationary
Gabor representations of the signal. The transform parameters were B = 48 and ξmin =
50 Hz.

as a proposed variable-Q transform, will be further discussed in a future
contribution.
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Figure 13: Comparison of computation time of CQT (top curves) and NSGT (bottom
curves). The figure on the left shows the computation times for signals of various lengths
with the number of bins per octave fixed at B = 48, while the figure on the right shows
the computation times for the Glockenspiel signal, varying the number of bins per octave.
In both figures, the solid lines represent the mean time (in seconds) and the dashed or
dotted lines signify the mean time with corresponding variance. The lower left curve also
shows gray solid lines indicating an outlier. The minimum frequency for all cases ξmin was
chosen at 50 Hz.

5. Conclusion and perspectives

Our approach enables the construction of frames with flexible evolution
of time-frequency resolution over time or frequency. The resulting frames are
well suited for applications as they can be implemented using fast algorithms,
at a computational cost close to standard Gabor frames.

Exploiting evolution of resolution over time, the proposed approach can
be of particular interest for applications where the frequency characteristics
of the signal are known to evolve significantly with time. Order analysis
[36], in which the signal analyzed is produced by a rotating machine having
changing rotating speed, is an example of such an application.

Exploiting evolution of resolution over frequency, the presented approach
is valuable for applications requiring the use of a tailored non uniform filter
bank. In particular, it can be used to build filter banks following some
perceptive frequency scale, see e.g. [5]. In the present contribution, we
described in detail an invertible constant-Q transform.
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One difficulty when using our approach is to adapt the time-frequency
resolution to the evolution of the signal characteristics. If prior knowledge
is available, this can be done by hand. An automatic adaptation algorithm
based on onset detection was described in Section 4.1.2. A different approach
will involve the investigation of sparsity criteria as proposed in [31]. Finally,
future work will lead to adaptability in both time and frequency leading to
quilted frames as introduced in [37].
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