function varargout=framemuleigs(Fa,Fs,s,varargin)
%FRAMEMULEIGS Eigenpairs of frame multiplier
% Usage: [V,D]=framemuleigs(Fa,Fs,s,K);
% D=framemuleigs(Fa,Fs,s,K,...);
%
% Input parameters:
% Fa : Analysis frame
% Fs : Synthesis frame
% s : Symbol of Gabor multiplier
% K : Number of eigenvectors to compute.
% Output parameters:
% V : Matrix containing eigenvectors.
% D : Eigenvalues.
%
% [V,D]=FRAMEMULEIGS(Fa,Fs,s,K) computes the K largest eigenvalues
% and eigen-vectors of the frame multiplier with symbol s, analysis
% frame Fa and synthesis frame Fs. The eigenvectors are stored as
% column vectors in the matrix V and the corresponding eigenvalues in
% the vector D.
%
% If K is empty, then all eigenvalues/pairs will be returned.
%
% D=FRAMEMULEIGS(...) computes only the eigenvalues.
%
% FRAMEMULEIGS takes the following parameters at the end of the line of input
% arguments:
%
% 'tol',t Stop if relative residual error is less than the
% specified tolerance. Default is 1e-9
%
% 'maxit',n Do at most n iterations.
%
% 'iter' Call eigs to use an iterative algorithm.
%
% 'full' Call eig to solve the full problem.
%
% 'auto' Use the full method for small problems and the
% iterative method for larger problems. This is the
% default.
%
% 'crossover',c
% Set the problem size for which the 'auto' method
% switches. Default is 200.
%
% 'print' Display the progress.
%
% 'quiet' Don't print anything, this is the default.
%
% Examples:
% ---------
%
% The following example calculates and plots the first eigenvector of the
% Gabor multiplier given by the BATMASK function. Note that the mask
% must be converted to a column vector to work with in this framework:
%
% mask=batmask;
% [Fa,Fs]=framepair('dgt','gauss','dual',10,40);
% [V,D]=framemuleigs(Fa,Fs,mask(:));
% sgram(V(:,1),'dynrange',90);
%
% See also: framemul, framemulappr
%
% Url: http://ltfat.github.io/doc/operators/framemuleigs.html
% Copyright (C) 2005-2023 Peter L. Soendergaard <peter@sonderport.dk> and others.
% This file is part of LTFAT version 2.6.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Change this to 1 or 2 to see the iterative method in action.
printopts=0;
if nargin<2
error('%s: Too few input parameters.',upper(mfilename));
end;
if nargout==2
doV=1;
else
doV=0;
end;
tolchooser.double=1e-9;
tolchooser.single=1e-5;
definput.keyvals.K=6;
definput.keyvals.maxit=100;
definput.keyvals.tol=tolchooser.(class(s));
definput.keyvals.crossover=200;
definput.flags.print={'quiet','print'};
definput.flags.method={'auto','iter','full'};
[flags,kv,K]=ltfatarghelper({'K'},definput,varargin);
% Do the computation. For small problems a direct calculation is just as
% fast.
L=framelengthcoef(Fa,size(s,1));
if (flags.do_iter) || (flags.do_auto && L>kv.crossover)
if flags.do_print
opts.disp=1;
else
opts.disp=0;
end;
opts.isreal = Fa.realinput;
opts.maxit = kv.maxit;
opts.tol = kv.tol;
if doV
[V,D] = eigs(@(x) framemul(x,Fa,Fs,s),L,K,'LM',opts);
else
D = eigs(@(x) framemul(x,Fa,Fs,s),L,K,'LM',opts);
end;
else
% Compute the transform matrix.
bigM=frsynmatrix(Fs,L)*diag(s)*frsynmatrix(Fa,L)';
if doV
[V,D]=eig(bigM);
else
D=eig(bigM);
end;
end;
% The output from eig and eigs is sometimes a diagonal matrix, so we must
% extract the diagonal.
if doV
D=diag(D);
end;
% Sort them in descending order
[~,idx]=sort(abs(D),1,'descend');
D=D(idx(1:K));
if doV
V=V(:,idx(1:K));
varargout={V,D};
else
varargout={D};
end;
% Clean the eigenvalues, if we know that they are real-valued
%if isreal(ga) && isreal(gs) && isreal(c)
% D=real(D);
%end;