function c = phaseunlock(c,a,varargin)
%PHASEUNLOCK Undo phase lock of Gabor coefficients
% Usage: c=phaseunlock(c,a);
%
% PHASEUNLOCK(c,a) removes phase locking from the Gabor coefficients c.
% The coefficient must have been obtained from a DGT with parameter a.
%
% Phase locking the coefficients modifies them so as if they were obtained
% from a time-invariant Gabor system. A filter bank produces phase locked
% coefficients.
%
% See also: dgt, phaselock, symphase
%
% References:
% M. Puckette. Phase-locked vocoder. Applications of Signal Processing to
% Audio and Acoustics, 1995., IEEE ASSP Workshop on, pages 222 --225,
% 1995.
%
%
% Url: http://ltfat.github.io/doc/gabor/phaseunlock.html
% Copyright (C) 2005-2023 Peter L. Soendergaard <peter@sonderport.dk> and others.
% This file is part of LTFAT version 2.6.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Peter Balazs, Peter L. Søndergaard.
% TESTING: OK
% REFERENCE: OK
if nargin<2
error('%s: Too few input parameters.',upper(mfilename));
end;
definput.keyvals.lt=[0 1];
[flags,kv]=ltfatarghelper({},definput,varargin);
if (prod(size(a))~=1 || ~isnumeric(a))
error('a must be a scalar');
end;
if rem(a,1)~=0
error('a must be an integer');
end;
M=size(c,1);
N=size(c,2);
L=N*a;
b=L/M;
if rem(b,1)~=0
error('Lattice error. The a parameter is probably incorrect.');
end;
TimeInd = (0:(N-1))*a;
FreqInd = (0:(M-1));
phase = FreqInd'*TimeInd;
phase = mod(phase,M);
phase = exp(-2*1i*pi*phase/M);
if kv.lt(1)>0
% truly non-separable case
for n=0:(N-1)
w = mod(n*kv.lt(1)/kv.lt(2),1);
phase(:,n+1) = phase(:,n+1)*exp(-2*pi*1i*a*w*n/M);
end
end
% Handle multisignals
c=bsxfun(@times,c,phase);