function c=dcti(f,L,dim)
%DCTI Discrete Cosine Transform type I
% Usage: c=dcti(f);
% c=dcti(f,L);
% c=dcti(f,[],dim);
% c=dcti(f,L,dim);
%
% DCTI(f) computes the discrete cosine transform of type I of the
% input signal f. If f is a matrix then the transformation is applied to
% each column. For N-D arrays, the transformation is applied to the first
% non-singleton dimension.
%
% DCTI(f,L) zero-pads or truncates f to length L before doing the
% transformation.
%
% DCTI(f,[],dim) or DCTI(f,L,dim) applies the transformation along
% dimension dim.
%
% The transform is real (output is real if input is real) and
% it is orthonormal.
%
% This transform is its own inverse.
%
% Let f be a signal of length L, let c=dcti(f) and define the vector
% w of length L by
%
% w = [1/sqrt(2) 1 1 1 1 ...1/sqrt(2)]
%
% Then
%
% L-1
% c(n+1) = sqrt(2/(L-1)) * sum w(n+1)*w(m+1)*f(m+1)*cos(pi*n*m/(L-1))
% m=0
%
% The implementation of this functions uses a simple algorithm that require
% an FFT of length 2L-2, which might potentially be the product of a large
% prime number. This may cause the function to sometimes execute slowly.
% If guaranteed high speed is a concern, please consider using one of the
% other DCT transforms.
%
% Examples:
% ---------
%
% The following figures show the first 4 basis functions of the DCTI of
% length 20:
%
% % The dcti is its own adjoint.
% F=dcti(eye(20));
%
% for ii=1:4
% subplot(4,1,ii);
% stem(F(:,ii));
% end;
%
% See also: dctii, dctiv, dsti
%
% References:
% K. Rao and P. Yip. Discrete Cosine Transform, Algorithms, Advantages,
% Applications. Academic Press, 1990.
%
% M. V. Wickerhauser. Adapted wavelet analysis from theory to software.
% Wellesley-Cambridge Press, Wellesley, MA, 1994.
%
%
% Url: http://ltfat.github.io/doc/fourier/dcti.html
% Copyright (C) 2005-2023 Peter L. Soendergaard <peter@sonderport.dk> and others.
% This file is part of LTFAT version 2.6.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Peter L. Søndergaard
% TESTING: TEST_PUREFREQ
% REFERENCE: REF_DCTI
complainif_argnonotinrange(nargin,1,3,mfilename);
if nargin<3
dim=[];
end;
if nargin<2
L=[];
end;
[f,L,Ls,W,dim,permutedsize,order]=assert_sigreshape_pre(f,L,dim,'DCTI');
if ~isempty(L)
f=postpad(f,L);
end;
if L==1
c=f;
else
c = comp_dct(f,1);
% c=zeros(L,W,assert_classname(f));
%
% f2=[f;flipud(f(2:L-1,:))]/sqrt(2);
% f2(1,:)=f2(1,:)*sqrt(2);
% f2(L,:)=f2(L,:)*sqrt(2);
%
% % Do DFT.
% s1=fft(f2)/sqrt(2*L-2);
%
% % This could be done by a repmat instead.
% for w=1:W
% c(:,w)=s1(1:L,w)+[0;s1(2*L-2:-1:L+1,w);0];
% end;
%
% c(2:L-1,:)=c(2:L-1,:)/sqrt(2);
%
% if isreal(f)
% c=real(c);
% end;
end;
c=assert_sigreshape_post(c,dim,permutedsize,order);