This is where navigation should be.

LTFAT - Basic Fourier and DCT analysis.

Peter L. Søndergaard, 2008 - 2023.

Support routines

  • fftindex - Index of positive and negative frequencies.
  • modcent - Centered modulo operation.
  • floor23 - Previous number with only 2,3 factors
  • floor235 - Previous number with only 2,3,5 factors
  • ceil23 - Next number with only 2,3 factors
  • ceil235 - Next number with only 2,3,5 factors
  • nextfastfft - Next efficient FFT size (2,3,5,7).

Basic Fourier analysis

Simple operations on periodic functions

  • involute - Involution.
  • peven - Even part of periodic function.
  • podd - Odd part of periodic function.
  • pconv - Periodic convolution.
  • pxcorr - Periodic crosscorrelation.
  • lconv - Linear convolution.
  • lxcorr - Linear crosscorrelation.
  • isevenfunction - Test if function is even.
  • middlepad - Cut or extend even function.

Periodic functions

  • expwave - Complex exponential wave.
  • pchirp - Periodic chirp.
  • pgauss - Periodic Gaussian.
  • psech - Periodic SECH.
  • pbspline - Periodic B-splines.
  • shah - Shah distribution.
  • pheaviside - Periodic Heaviside function.
  • prect - Periodic rectangle function.
  • psinc - Periodic sinc function.
  • ptpfun - Periodic totally positive function of finite type.
  • pebfun - Periodic EB spline.

Specialized dual windows

Hermite functions and fractional Fourier transforms

  • pherm - Periodic Hermite functions.
  • hermbasis - Orthonormal basis of Hermite functions.
  • dfracft - Discrete Fractional Fourier transform
  • ffracft - Fast Fractional Fourier transform

Approximation of continuous functions

Cosine and Sine transforms.

  • dcti - Discrete cosine transform type I
  • dctii - Discrete cosine transform type II
  • dctiii - Discrete cosine transform type III
  • dctiv - Discrete cosine transform type IV
  • dsti - Discrete sine transform type I
  • dstii - Discrete sine transform type II
  • dstiii - Discrete sine transform type III
  • dstiv - Discrete sine transform type IV

For help, bug reports, suggestions etc. please visit http://github.com/ltfat/ltfat/issues